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Abstract

Snake venoms are complex mixtures of proteins with toxic activities, with many distinct iso-

forms, affecting different physiological targets, comprised in a few protein families. It is cur-

rently accepted that this diversity in venom composition is an adaptive advantage for venom

efficacy on a wide range of prey. However, on the other side, variability on isoforms expres-

sion has implications in the clinics of human victims of snakebites and in the efficacy of anti-

venoms. B. atrox snakes are responsible for most of the human accidents in Brazilian

Amazon and the type and abundance of protein families on their venoms present individual

variability. Thus, in this study we attempted to correlate the individual venom proteome of

the snake brought to the hospital by the patient seeking for medical assistance with the clini-

cal signs observed in the same patient. Individual variability was confirmed in venoms of the

14 snakes selected for the study. The abundance of each protein family was quite similar

among the venom samples, while the isoforms composition was highly variable. Consider-

ing the protein families, the SVMP group presented the best correlation with bleeding disor-

ders and edema. Considering individual isoforms, some isoforms of venom

metalloproteinase (SVMP), C-type lectin-like toxins (CTL) and snake venom serine protein-

ases (SVSP) presented expression levels that with statistically significant positive correla-

tion to signs and symptoms presented by the patients as bleeding disorders, edema,

ecchymosis and blister formation. However, some unexpected data were also observed as

the correlation between a CTL, CRISP or LAAO isoforms with blister formation, still to be

confirmed with a larger number of samples. Although this is still a small number of patient

samples, we were able to indicate that venom composition modulates clinical manifestations

of snakebites, to confirm at the bedside the prominent role of SVMPs and to include new
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possible toxin candidates for the development of toxin inhibitors or to improve antivenom

selectiveness, important actions for the next generation treatments of snakebites.

Author summary

Bothrops atrox is a snake of major medical importance in the Amazon. Its venom is spe-

cialized to kill preys in the nature, especially because of coagulotoxic and proteolytic activ-

ities. B. atrox envenomings cause local inflammation and, in a significant proportion,

systemic manifestations, namely bleeding disorders. These signs and symptoms are caused

by the various toxins present in the venom of this snake, which act in the organism by dif-

ferent mechanisms. It is not known to what extent the composition of the venom that was

inoculated by the snake that caused the envenoming can influence the patient’s clinical

condition. To study this subject, this work correlated the constituents of the venom with

the clinical manifestations of hospitalized patients, taking advantage of the fact that many

patients bring the snake responsible for the bite. The abundance of each toxin family was

similar among the venom samples, but the variants composition of each toxin was highly

variable. Considering the protein families, a group named metalloproteases (SVMP) pre-

sented the best correlation with bleeding disorders and edema. Some variants of venom

SVMPs, and other toxin families, such as C-type lectin-like toxins (CTL) and snake

venom serine proteinases (SVSP) presented correlation to signs and symptoms presented

by the patients as bleeding disorders, edema, ecchymosis and blister formation. Our

results show that venom composition modulates clinical manifestations of snakebites.

Introduction

Snakebite is a neglected tropical disease with high incidence in Brazil, especially in the Amazon

region [1]. Bothrops atrox is the snake species responsible for approximately 90% of the snake-

bites in Brazilian Amazon [2]. Unclottable blood, a predictor of systemic bleeding, is the com-

monest hemostatic disorder in the envenomation, while local signs ranges from pain and

swelling at the site of bite minutes after the event, to intense signs and symptoms at the bitten

limb, with blistering and tissue necrosis. Secondary infection, compartmental syndrome, and

extensive necrosis can lead to temporary or permanent disability of the bitten limb. Spontane-

ous systemic bleeding and acute renal failure are common complications from B. atrox enve-

nomings [3,4]. However, the occurrence of each sign/symptom is variable among the patients.

In a recent study, 54% of patients of Manaus, in the Brazilian Amazon, presented unclottable

blood at admission [5], while systemic bleeding are reported in around 15% of the cases [6].

Several factors have been associated with the envenomations’ characteristics and severity, such

as the patient’s condition, pre-hospital treatments and the time before antivenom therapy [7].

Aspects related to the snake involved in the envenomation, such as their ontogenetic stage,

have also been correlated to patients’ signs and symptoms, possibly caused by the individual

variability in snake venom composition [8].

In B. atrox snakes collected at Brazilian Amazon, venoms are predominately composed by

snake venom metalloproteinase (SVMP) followed by C-type lectin-like toxins (CTL), snake

venom serine proteinases (SVSP), phospholipases A2 (PLA2), cysteine-rich secretory proteins

(CRISP), L-amino acid oxidases (LAAO) and other minor components [9–11]. It is widely

accepted that the spectrum of the snakebite envenomation depends on the additive or
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synergistic action of these toxins. Venom-induced coagulopathy has been correlated to throm-

bin-like SVSPs and procoagulant SVMPs that activates coagulation factors II and X [10,12]. In

addition, CTLs or acidic PLA2s have an anticoagulant effect by inhibiting components of the

coagulation cascade [13]. SVMPs classes PI and P-III such as Atroxlysin-I [14,15] and Batroxr-

hagin [16] cause damage in vascular endothelium resulting in local and/or systemic bleeding

and contributing to the ischemia on tissues adjacent to the bite. SVMPs and PLA2s display

direct proinflammatory activity [17,18] or induce the release of endogenous proinflammatory

activators of TLR pathways [19]. Cytotoxic toxins acting directly on different cell types are also

present as myotoxic PLA2s [20] or proapoptotic LAAOs [21] and SVMPs [22,23], enhancing

the local damage induced by the hemostatic disturbances and proinflammatory effects of

venom toxins. However, these functional assumptions must be taken with some concerns. Sev-

eral structurally-related isoforms are included within each protein family, but in spite of struc-

tural similarity, they may display different biological activities and target distinct physiological

pathways [24]. The functional variability of snake venom components is a great adaptive

advantage for snakes enabling the capture of a wider prey variety but has important conse-

quences for human envenomings.

The abundance of each toxin family and their isoforms varies in venoms of different speci-

mens of B. atrox snakes [25], according to snake ontogeny [26,27], geographical distribution

[9,28] and habitats occupied by a single population [11]. Clinically, intraspecific differences

could impact on clinical outcomes and in the neutralizing capacity of the antivenoms

[11,12,28]. In this study, we attempted to correlate the venom composition and the abundance

of each component of venom in samples collected from B. atrox snakes brought to the hospital

by the patients, to the clinical manifestations presented by the patient on the healthcare unit.

Material and methods

Patients

We included snakebites occurring at Manaus, Brazilian Amazon (Fig 1A), attended at Funda-
ção de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), from January to December

2017. Eligible patients presented clinical signs of Bothrops envenomation and brought the

snake responsible for the envenomation, which was identified as B. atrox. On admission, epi-

demiological and clinical information was collected using a standardized questionnaire.

Envenomation was classified as mild, moderate, or severe, according to the Brazilian Ministry

of Health guidelines [29]. Edema was classified as absent, mild (affecting 1±2 segments), mod-

erate (affecting 3±4 segments) and severe (affecting more than 5 limb segments). Presence of

pain, local bleeding, ecchymosis, necrosis and systemic bleeding were also recorded. Compart-

ment syndrome was diagnosed by an experienced physician by serial physical examinations

and intramuscular pressure measurement. Coagulopathy was defined as an unclottable blood

from the Lee-White clotting time method [6]. Patients were treated according the Brazilian

Ministry of Health protocols. All patients were evaluated for at least 48 hours.

Venom extraction and chromatographic characterization

Venom was extracted individually from the snakes brought by the patients (Fig 1B) and only

living animals or snakes killed less than 8 hours before hospital admission were included.

Venom was collected from the fangs (Fig 1C) by massages in the venom gland region. In some

specimens, the venom gland was exposed and venom samples collected by puncturing the

gland lumen (Fig 1D). After extraction, venom samples were conserved freeze-dried and dis-

solved before use in 50 mM Tris buffer, pH 7.2. Protein concentration was estimated using

Bradford reagent and BSA dilutions as a standard curve. Individual venom samples (2 mg)
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were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC)

following previously described methods [30]. The chromatographic profiles obtained were

analyzed based on a previously performed standard chromatogram, in which components

present in every fraction were characterized by mass spectrometry [11].

Proteomic characterization

Each venom sample (50 μg) was reduced and alkylated before treatment with trypsin solution

(0.2 μg/μL), as previously described [31]. The tryptic digests were desalted using Empore

C18-SD 4mm/1mL column (Supelco, UK). Peptide samples were resuspended in 0.1% FA

(formic Acid) and each sample was analyzed in duplicate using an EASY-nLC system (Thermo

Scientific) coupled to LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific). The pep-

tides were loaded onto a C18 PicoFrit column (C18 PepMap, 75 μm id × 10 cm, 3.5 μm particle

size, 100 Å pore size; New Objective, Ringoes, NJ, USA) and separated with a gradient from

100% mobile phase A (0.1% FA) to 34% phase B (0.1% FA, 95% ACN) during 60 min, 34%–

95% in 15 min and 5 min at 95% phase B at a constant flow rate of 250 nL/min. The LTQ-Or-

bitrap Velos was operated in positive ion mode with data-dependent acquisition. The full scan

was obtained in the Orbitrap with an automatic gain control (AGC) target value of 10e6 ions

and a maximum fill time of 500 ms. Each precursor ion scan was acquired at a resolution of

Fig 1. Area of the snakebites and venom sample extraction from Bothrops atrox specimens. Patients were bitten nearby Manaus city, State of Amazonas,

Brazil. (A). Usually they bring the snakes in bottles (B). Venom was extracted from the snake fangs (C) or in some specimens, venom gland was exposed

and venom samples collected by puncturing the gland lumen (D). Map produced using QGIS, Open Source Geospatial Foundation Project http://qgis.

osgeo.org.

https://doi.org/10.1371/journal.pntd.0008299.g001
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60,000 FWHM in the 400–1500 m/z mass range. Peptide ions were fragmented by CID MS/

MS using a normalized collision energy of 35. The 20 most abundant peptides were selected

for MS/MS and dynamically excluded for 30s. All raw data were assessed in the Xcalibur soft-

ware (Thermo Scientific). Analysis have been carried out at BIOMASS facility (CEFAP-USP,

São Paulo, Brazil). Tandem mass spectra were processed and searched against an in house

database composed by the full-length precursor proteins predicted from the transcriptomes of

five specimens of B. atrox [25], using the search tools Mascot (Matrix Science, London, UK;

version 2.6.2) and X! Tandem [(The GPM, thegpm.org; version X! Tandem Alanine

(2017.2.1.4)]. The Scaffold package (Scaffold_4.9.0, Proteome Software Inc., Portland, OR) was

used to validate MS/MS-based peptide and protein identifications. Protein identification was

based on the presence of at least two proteotypic peptides relating to each venom protein iso-

form. Quantitative values were expressed for protein families as normalized total spectral

counts of all isoforms included in the same group and for isoforms, as normalized exclusive

unique spectrum counts corresponding to peptides of a given protein entry present in the

database.

Data analyses

Multiple cross-correlation analyses between variables were performed. Due to the categorical

nature of the “signs/symptoms” variable, and the small sample size, Spearman Rank Correla-

tion Tests were employed in all cross-correlation calculations. Also, due to the small sample

size, formal statistical testing is not to be interpreted as rigorous quantitative confidence of the

results discussed, but rather a piece of supporting information corroborating the biological

interpretation. Accordingly, we, therefore, relax the usual 95% confidence interval used in bio-

statistics and adopt 90% confidence interval in all tests.

Ethical clearance

Ethical approval for human information collection was obtained from the Fundação de Medi-
cina Tropical Doutor Heitor Vieira Dourado (approval number 1302174/2016.). Written

informed consent was obtained from the patient or their guardians for minors. Snake manipu-

lation was approved by the FMT-HVD Animal Ethical Committee (001552/2017.011) and reg-

istered in SISGEN under process A3A5599.

Results and discussion

Patients’ signs and symptoms

During the period of the study, 32 patients brought the snake involved in the envenomation

for identification at the FMT-HVD hospital. Sixteen patients were not included because they

were brought more than 8 hours after the bite. Venom was successfully extracted from the

other 16 specimens in quantities that allowed compositional characterization. Two patients

presenting “dry bite” were further excluded. The remaining 14 patients were included in the

study, recorded their major signs and symptoms of the envenomation, and the characteriza-

tion of the venom composition of the perpetrating snake was made. Most of the patients were

bitten on the foot (10), and took from 40 min to 6:30 h to receive health care. Three applied

tourniquets at the bitten limb. All patients presented edema (14), followed by pain (13) and

local bleeding (6). One patient developed blistering, and 4 evolved to secondary infection after

48 hours of follow-up (3 with abscess and 1 with cellulitis) and 2 had necrosis. Blood was

unclottable in 8 cases, and one patient manifested systemic bleeding. Clinical severity was con-

sidered moderate in 9 patients and mild in 4; only one patient presented a severe
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envenomation. There were no deaths (Table 1). It is important to note that the estimation of

the amount of venom injected to the patients, by quantification either in circulation or in the

tissues, would be of high value for this study. However, these tests are not currently used at the

hospital and serum samples before antivenom administration were available from only four

patients, thus the obtained values not included in the study.

Characterization of venom composition

Variability in venom composition was confirmed in five specimens with sufficient venom to

perform RP-HPLC chromatography. As shown in Fig 2, each sample displayed different chro-

matographic profile, evidencing the individual variability in the venom composition of snakes

involved in each envenomation. The common characteristics of all venoms were the elution of

the highest peaks after 85 minutes, which is characteristic to the elution of SVMPs and consis-

tent with the predominance of this toxin family in the venoms of B. atrox snakes collected in

different areas of Brazilian Amazon [32]. Nevertheless, the shape and abundance of each peak

in the region indicate that different SVMP isoforms are dominant in the venom of each snake.

Moreover, variability in the expression of other protein families was indicated as higher peaks

were observed in the regions that elute CTLs, SVSPs and PLA2s in venoms of BATX 13, BATX

15 and BATX 18 snakes, respectively (Fig 2).

Next, we evaluated by shotgun proteomics the venom composition and variability of

expression levels of each protein family among the venom samples (detailed proteomics data is

shown in S1 and S2 Tables). In these analyses, a pool of venoms from live B. atrox snakes from

the same region, maintained under captivity, was used as control (Fig 3). All venoms shared

the presence of 11 protein families: SVMP, CTL, SVSP, LAAO, PLA2, CRISP, phosphodiester-

ases (PDE), nucleotidases (NUC), venom vascular endothelial growth factors (VEGF), nerve

growth factors (NGF), and hyaluronidases (HYAL). In all samples, there was a predominance

of SVMPs and CTLs, followed by SVSPs, PLA2s and LAAO, with smaller amounts of CRISPs,

NUCs, PDEs, VEGFs, NGFs, and HYALs, similar to previous results [9,30]. However, the

expression levels of protein groups differed among the venoms. For example, BATX 9 venom

showed the highest levels of SVMPs and the lowest of CTLs (Fig 3).

Venom variability was also assessed by the label-free quantification of the isoforms in each

pool of venom was based on the exclusive unique spectrum counts to avoid the redundancy due

to the sequence similarity of isoforms present in each protein group. This approach was possi-

ble and reliable since we used as databank a comprehensive masterset containing 150 complete

sequences obtained by transcriptomics of venom glands from five B. atrox specimens [25].

The numbers of exclusive unique spectra counted for each isoform are shown in S1 Table. In

Table 2 we highlight the great variability in the expression levels of isoforms among the ven-

oms. BATXSVMPI5 and BATXSVMPIII28 were the most abundant isoforms in all venom

samples, even though, with differences in their expression levels. These sequences are from

two hemorrhagic toxins recently isolated from B. atrox venoms named Atroxlysin-Ia [14] and

Batroxrhagin [16], respectively, that degrade extracellular matrix and display proinflammatory

activity (Almeida et al., submitted). Other toxins as BATXSVMPIII1, BATXCRISP1, and

BATXPDE1 are also present above the average in all venom samples. Most of the isoforms pre-

sented great variability in their expression levels among the venoms. Good examples are

BATXPLA3, BATXCLT28, BATXSVMPIII16 and BATXLAAO2 expression levels among the

venoms. Also interesting is the BATX 32 venom that presents above average levels of most

SVMPs and lower levels of isoforms from other protein families (Table 2). This picture is in

agreement with our previous data showing that Atroxlysin-Ia and Batroxrhagin are core func-

tion toxins highly preserved and widely expressed in B. atrox individual venoms while other
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isoforms are more likely to variability attempting to a functional reservoir for snake adaptivity

[25]. However, the low and uniform expression of SVSP isoforms in these venom samples was

not expected.

Correlation between venom proteome and patients’ signs and symptoms

We first attempted to correlate the levels of expression of venom protein families with the

signs and symptoms presented by the corresponding patients and observed only a few positive

correlations (Table 3; S3 Table). The abundance of SVMPs correlated to unclottable blood at

admission (PII-class), edema and complications after 48 h (PI-class). SVSPs correlated only

with complications after 48 h, and CTLs abundance correlated to edema (Table 3). SVMPs are

recognized as key toxins in venoms of viper snakes, responsible for both local and systemic dis-

turbances observed after envenomings [17], explaining the positive correlations observed.

However, it is intriguing the lack of correlation between SVSPs and bleeding disturbances as

SVSPs are thrombin-like enzymes involved in the consumption coagulopathy signed by

unclottable blood at admission [33]. However, in this matter, the role of metalloproteases that

act as factors II and X activators, identified in the venom of B. atrox, should be highlighted,

Fig 2. Comparison of the chromatographic profiles of venom samples from the snakes. Samples containing 2 mg of crude venom were fractionated by

RP-HPLC as described in Methods section. Regions eluting disintegrins (Dis), phospholipases A2 (PLA2), serine proteinases (SVSP), C-type lectin-like

(CTL) and metalloproteinases (SVMP) are annotated and were identified as characterized in a previous study [11].

https://doi.org/10.1371/journal.pntd.0008299.g002
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which could explain the consumption coagulopathy [34,35]. Also, intriguing was the lack of

correlation between hemorrhagic toxins, classified as PIII-class SVMPs, and local or systemic

bleeding. Moreover, little is known about the relationship between CTLs and edema. Such

unexpected results could be attributed to different isoforms within each protein family with

distinct biological functions [24]. Thus, we proceeded with the comparisons of venom compo-

sition and correlations to patients’ signs and symptoms at the isoform level.

As shown in Table 4, specific isoforms presented expression levels with statistically signifi-

cant positive correlation to signs and symptoms presented by the patients. Local bleeding was

correlated to the expression of the hemorrhagic toxin Batroxrhagin (BATXSVMPIII 28), also

to a serine proteinase not yet functionally characterized, but that may display thrombin-like

activity (BATXSVSP10) and to two CTLs (BATXCTL 9 and 28) that present 75–85% sequence

identity with Bothrojaracin, an inhibitor of thrombin present in different venoms of Bothrops
snakes [36]. These isoforms have already been correlated to bleeding processes in experimental

models and our data validate these previous observations in signs and symptoms presented by

human victims of snakebites. Interestingly, BATXPLA3, with 93% identity with a non-hemor-

rhagic myotoxin [37], also showed significant correlation with local bleeding. The positive cor-

relation of BATXSVMPIII24 to edema and ecchymosis was also significant. This isoform

presents 81% identity with Berythractivase, a non-hemorrhagic pro-coagulant SVMP from B.

erythromelas venom that activates Factor II [38]. The only isoforms correlating to unclottable

blood on admission were BATXSVMPIII9, a PIII-class SVMP with small identity to the

already isolated toxins, and an isoform of vascular endothelial growth factor (BATXVEGF5).

BATXSVMPIII9 also correlated to edema together with BATXSVMPIII27, also functionally

uncharacterized. Some unexpected data were also observed as the highly significant correlation

between BATXCTL23 with blister formation. This isoform presents 83% identity with a CTL

isolated from B. jararaca venom that binds to the platelet receptor GPIb bp and inhibits plate-

let-aggregation [39]; however, the implications of CTLs with local effects of snake venoms as

Fig 3. Proteomic profile of the individual venom samples. Relative expression indicated by the values of normalized total spectrum counts of toxins

identified in the venoms of snakes brought to the hospital by 14 patients. Control is the venom of a live B. atrox specimen maintained under captivity at

FMT-HVD serpentarium. Toxin isoforms were grouped according to the toxin families: SVMP—snake venom metalloproteinase; CTL—C-type lectin;

SVSP—snake venom serine proteinase; PLA2—phospholipase A2; LAAO—L-amino acid oxidase; CRISP—cysteine-rich secretory protein; PDE—

phosphodiesterase; NUC—nucleotidase; VEGF—vascular endothelial growth factor; HYAL—hyaluronidase; NGF—nerve growth factor.

https://doi.org/10.1371/journal.pntd.0008299.g003
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blistering are still uncertain. Similarly, some indications about the participation of CRISPs or

LAAOs in blister formation are suggested here for the first time and deserve further attention.

However, it is important to note that only one patient developed a blister indicating that these

unexpected observations should be interpreted with caution. Envenomation severity and

development of complications after 48 h correlated either positively or negatively with differ-

ent toxins from the same families.

Although we evidenced statistically significant correlation of individual toxins with

patients’ signs and symptoms, these occurrences are certainly multifactorial, therefore, we

attempted to proceed multivariate tests as multivariate linear least squares and multivariate

Table 2. Normalized Exclusive Unique Spectrum Count of predominant isoforms in venoms�.

Isoforms BATX 3 BATX 5 BATX 8 BATX 9 BATX

10

BATX

13

BATX

15

BATX

18

BATX

24

BATX

25

BATX

27

BATX

28

BATX

30

BATX

32

CTL

BATXCTL9 20.43 19.04 18.72 11.90 15.61 15.57 17.57 14.46 13.93 17.41 12.57 10.28 15.23 10.62

BATXCTL23 0.00 0.00 0.00 0.00 0.00 0.00 13.66 4.57 0.00 0.00 0.00 0.00 0.00 0.00

BATXCTL28 30.10 22.84 20.80 8.50 21.47 19.47 26.35 4.57 19.73 12.06 10.90 10.28 18.08 1.93

BATXCTL39 25.80 14.28 17.68 7.65 18.54 19.47 9.76 12.94 18.57 12.06 18.44 16.82 13.32 7.72

PLA2

BATXPLA2 32.25 2.86 2.08 0.85 13.66 1.95 3.90 22.84 5.80 38.84 0.00 24.30 4.76 0.97

BATXPLA3 0.00 19.99 16.64 9.35 0.00 13.63 20.49 0.00 20.89 0.00 0.00 0.00 17.13 0.00

BATXPLA5 26.88 20.94 23.92 22.95 22.45 6.81 21.47 28.16 34.82 17.41 18.44 24.30 3.81 30.90

BATXPLA6 23.65 0.00 0.00 11.90 19.52 16.55 0.00 15.22 0.00 21.43 20.11 12.15 19.04 10.62

SVMP

BATXSVMPI5 53.76 45.68 46.79 35.69 60.51 35.04 53.68 35.78 48.74 49.56 36.04 46.73 41.88 18.35

BATXSVMPIII1 35.48 41.88 31.20 33.99 40.99 33.09 40.01 26.64 32.50 36.17 27.66 34.58 24.75 42.49

BATXSVMPIII2 13.98 13.32 3.12 12.75 8.78 12.65 10.74 25.88 11.61 12.06 25.14 23.37 2.86 32.83

BATXSVMPIII5 19.35 15.23 16.64 20.40 20.49 15.57 19.52 15.99 20.89 14.73 15.09 15.89 13.32 20.28

BATXSVMPIII9 11.83 24.75 20.80 35.69 4.88 24.33 25.37 35.78 18.57 18.75 28.50 29.91 22.84 29.93

BATXSVMPIII16 7.53 8.57 0.00 25.49 4.88 25.31 9.76 26.64 18.57 4.02 31.01 25.24 14.28 47.31

BATXSVMPIII18 23.65 20.94 23.92 17.00 31.23 19.47 0.00 21.31 18.57 12.06 27.66 9.35 19.99 4.83

BATXSVMPIII24 31.18 32.36 45.75 11.05 22.45 4.87 44.89 25.88 3.48 20.09 5.87 34.58 39.97 32.83

BATXSVMPIII27 0.00 2.86 0.00 20.40 5.86 27.25 0.00 24.36 9.28 8.04 24.31 10.28 0.95 33.80

BATXSVMPIII28 79.56 74.24 73.83 62.04 82.95 56.45 69.29 49.48 81.24 66.97 61.18 69.17 63.77 49.25

SVSP

BATXSVSP10 16.13 19.04 15.60 4.25 12.69 15.57 14.64 1.52 13.93 10.72 10.90 12.15 14.28 1.93

BATXSVSP20 11.83 14.28 15.60 16.15 10.74 15.57 13.66 12.18 15.09 22.77 14.25 12.15 10.47 13.52

Other

BATXCRISP1 31.18 27.60 22.88 27.19 30.25 29.20 33.18 22.08 22.05 25.45 21.79 25.24 25.70 27.04

BATXHYAL1 4.30 2.86 2.08 0.85 0.98 1.95 1.95 2.28 1.16 0.00 3.35 0.93 2.86 2.90

BATXLAAO2 10.75 31.41 29.12 27.19 51.72 26.28 20.49 36.54 64.99 60.28 47.77 56.08 48.54 13.52

BATXNGF1 0.00 3.81 5.20 5.10 2.93 5.84 6.83 3.81 5.80 9.38 5.03 0.93 6.66 6.76

BATXNUC1 3.23 8.57 30.16 19.55 24.40 9.73 13.66 12.94 18.57 34.83 16.76 25.24 23.79 8.69

BATXPDE1 39.78 41.88 45.75 34.84 40.99 28.23 35.13 27.40 34.82 30.81 33.52 29.91 46.64 45.38

BATXVEGF5 2.15 4.76 9.36 8.50 2.93 9.73 5.86 12.94 2.32 1.34 8.38 2.80 1.90 5.79

�Table includes only isoforms with more than 18 spectra in at least one of the venoms. Complete data is in Supplementary Table 1. Cells were formatted based on their

values relative to the mean expression of all isoforms. Gradual scales in blue or red show values below or above average respectively.

https://doi.org/10.1371/journal.pntd.0008299.t002
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logistic models. However, these tests failed to lead to any conclusion due to multicolinearity

issues and mostly because of the small number of patients.

These are the first evidences correlating the venom proteome and signs and symptoms pre-

sented by snakebite patients. As previously predicted by experimental models [17], toxins

included in the SVMP group presented the best correlation with many clinical manifestations.

However, other isoforms included in the CTLs, SVSPs and other toxin groups also presented

statistically significant correlations. These findings have a direct implication on the current

discussion about the new generation snakebite treatments. Currently, antivenoms are com-

posed of antibody molecules generated by immunization of large mammals with venom anti-

gens. The basis for the neutralization of toxins by the polyclonal antibodies is their multiple

specificities that make them able to bind and to neutralize most of the isoforms of the venom

toxins. However, efforts have been made to substitute plasma collected from live animals in

the antivenom manufacture’s process by monoclonal antibodies prepared in cell-culture

media. However, monoclonal antibodies recognize a single epitope, usually restricted to spe-

cific isoforms. In this regard, to attempt a substitution of currently available antivenoms, pools

with large types of monoclonal antibodies derived from different isoforms should be used. As

shown here, different isoforms of toxins included in different toxin families correlated to signs

and symptoms of snakebite. However, monoclonal antibodies are selective to specific motifs

present in toxin molecules. Examples of monoclonal antibodies that recognize SVMPs from

venoms of distinct species of Bothrops snakes are available but still, these antibodies recognize

only homologous toxins in such venoms [40]. In this regard, to attempt a substitution of cur-

rently available polyclonal antivenoms, pools with monoclonal antibodies with specificity to

different isoforms included in several protein families, should be used since, as shown here,

distinct toxin isoforms correlated to symptoms of snakebite.

Table 3. Significant results of Spearman cross-correlation between ranks of normalized total spectrum counts venom protein families and patients’ symptoms�.

Isoforms Severity of

Envenomation

Unclottable

Blood

Local

Bleeding

Pain Edema Local

Ecchymosis

Systemic

Hemorrhage

Blister Complications after

48 h

CRISP -0.47

(p = 0.093)

-0.49

(p = 0.075)

CTL 0.46

(p = 0.094)

HYAL

LAAO -0.50 (p = 0.068)

NGF

NUC

PDE

PLA2 -0.53 (p = 0.051) -0.61

(p = 0.020)

SVMP—I 0.55

(p = 0.041)

0.49 (p = 0.074)

SVMP—II 0.57 (p = 0.032)

SVMP—

III

-0.47

(p = 0.093)

SVSP 0.49 (p = 0.073)

VEGF

Cells are formatted based on their correlation values with gradual scales in red or blue, corresponding to direct or inverse correlation, respectively.

https://doi.org/10.1371/journal.pntd.0008299.t003
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Table 4. Significant results of Cross-Correlation of Ranks (Spearman Correlation) between expression levels of predominant isoforms on venoms and patients’

symptoms�.

Isoforms Severity of

Envenomation

Unclottable

Blood

Local

Bleeding

Pain Edema Local

Ecchymosis

Systemic

hemorrhage

Blister Complications

after 48 h

CTL

BATXCTL9 0.5

(p = 0.068)

BATXCTL23 0.73

(p = 0.003)

BATXCTL28 0.6 (p = 0.025) 0.64

(p = 0.013)

BATXCTL39 0.57 (p = 0.034)

PLA2

BATXPLA2

BATXPLA3 0.46 (p = 0.099) 0.46

(p = 0.099)

0.47 (p = 0.087)

BATXPLA5

BATXPLA6 -0.46

(p = 0.099)

SVMP

BATXSVMPI5

BATXSVMPIII1 -0.49

(p = 0.079)

BATXSVMPIII2 -0.54 (p = 0.046) -0.52 (p = 0.058)

BATXSVMPIII5

BATXSVMPIII9 -0.48 (p = 0.083) 0.47

(p = 0.093)

BATXSVMPIII16

BATXSVMPIII18 0.47

(p = 0.092)

BATXSVMPIII24 0.51

(p = 0.06)

0.67

(p = 0.009)

BATXSVMPIII27 -0.53 (p = 0.05) -0.54

(p = 0.046)

-0.46

(p = 0.099)

BATXSVMPIII28 0.47 (p = 0.091) 0.5

(p = 0.068)

SVSP

BATXSVSP10 0.72 (p = 0.004) 0.61

(p = 0.021)

BATXSVSP20 0.46 (p = 0.094)

Other

BATXCRISP1 0.56

(p = 0.037)

BATXHYAL1 -0.48

(p = 0.083)

-0.48

(p = 0.079)

BATXLAAO2 0.62

(p = 0.017)

BATXNGF1 0.57 (p = 0.034)

BATXNUC1

BATXPDE1

BATXVEGF5 0.54

(p = 0.048)

0.47 (p = 0.087)

�Table includes only isoforms with more than 18 exclusive unique spectra counted in at least one of the venoms. Complete data is in Supplementary Table 3. Cells are

formatted based on their correlation values with gradual scales in red or blue, corresponding to direct or inverse correlation, respectively.

https://doi.org/10.1371/journal.pntd.0008299.t004
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A more promising approach would be the use of enzyme inhibitors as an additional treat-

ment of snakebites. In this regard, inhibitors of metalloproteinases are a very promising strat-

egy as the catalytic site is well conserved within zinc-metalloproteinases, including SVMPs

[41], which were shown here to present best correlations with clinical manifestations. Some

metalloproteinase inhibitors, as batimastat, have already been tested [42,43] and trials involv-

ing new generation of SVMP inhibitors have been preconized by health authorities responsible

for snakebite treatments. Phospholipase A2 inhibitors as Varespladib are also being recognized

as additional first aid treatment in envenomings by some neurotoxic [44] or even coagulotoxic

elapid venoms [45]. However, in the case of Bothrops venoms, particularly B. atrox snakes

from Brazilian Amazon, phospholipases A2 are minor components and, as reported here,

showed little correlation with signs and symptoms of envenomings. Nevertheless, other com-

ponents as CTLs and SVSPs also play an important role in envenomings and the search of

therapeutic inhibitors should also attempt neutralization of these usually neglected toxin

groups.

Concluding, in this study we overcame the great difficulty to obtain the venom from the

snakes inflicting 14 human envenomations. Although this is still a small number of samples,

we were able to indicate that venom composition modulates signs and symptoms of snake-

bites, to confirm the prominent role of SVMPs and to include new possible toxin candidates to

further attention in the treatment of patients.
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Sachett.

Methodology: Ana Maria Moura-da-Silva, Jorge Carlos Contreras-Bernal, Sarah Natalie Cirilo

Gimenes, Luciana Aparecida Freitas-de-Sousa, José Antonio Portes-Junior, Leo Kei Iwai,
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3. Otero R, Núñez V, Gutiérrez JM, Robles A, Estrada R, Osorio RG, et al. Neutralizing capacity of a new

monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms. Braz J Med

Biol Res 1997: 30: 375–379. https://doi.org/10.1590/s0100-879x1997000300011 PMID: 9376817

4. Pardal PPO, Souza SM, Monteiro MRCC, Fan HW, Cardoso JLC, Franca FOS, et al. Clinical trial of two

antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Bra-

zil. Transactions of the Royal Society of Tropical Medicine and Hygiene 2004; 98: 28–42. https://doi.

org/10.1016/s0035-9203(03)00005-1 PMID: 14702836

5. Silva de Oliveira S, Campos Alves E, Dos Santos Santos A, Freitas Nascimento E, Tavares Pereira JP,

Mendonça da Silva I, et al. Bothrops snakebites in the Amazon: recovery from hemostatic disorders

after Brazilian antivenom therapy. Clin Toxicol (Phila) 2019; 1–9. https://doi.org/10.1080/15563650.

2019.1634273 PMID: 31264481

6. Brito Sousa JD, Sachett JAG, Oliveira SS, Mendonça-da-Silva I, Marques HO, Lacerda MVG, et al.

Accuracy of the Lee-White Clotting Time Performed in the Hospital Routine to Detect Coagulopathy in.

Am J Trop Med Hyg 2018; 98: 1547–1551. https://doi.org/10.4269/ajtmh.17-0992 PMID: 29611503

7. Feitosa ES, Sampaio V, Sachett J, Castro DB, Noronha M, Lozano JL, et al. Snakebites as a largely

neglected problem in the Brazilian Amazon: highlights of the epidemiological trends in the State of Ama-

zonas. Rev Soc Bras Med Trop 2015; 48 Suppl 1: 34–41. https://doi.org/10.1590/0037-8682-0105-

2013 PMID: 26061369

PLOS NEGLECTED TROPICAL DISEASES Relationship between clinics and the venom by snakebite

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008299 June 8, 2020 14 / 17

http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def
https://doi.org/10.1371/journal.pone.0208532
http://www.ncbi.nlm.nih.gov/pubmed/30521617
https://doi.org/10.1590/s0100-879x1997000300011
http://www.ncbi.nlm.nih.gov/pubmed/9376817
https://doi.org/10.1016/s0035-9203(03)00005-1
https://doi.org/10.1016/s0035-9203(03)00005-1
http://www.ncbi.nlm.nih.gov/pubmed/14702836
https://doi.org/10.1080/15563650.2019.1634273
https://doi.org/10.1080/15563650.2019.1634273
http://www.ncbi.nlm.nih.gov/pubmed/31264481
https://doi.org/10.4269/ajtmh.17-0992
http://www.ncbi.nlm.nih.gov/pubmed/29611503
https://doi.org/10.1590/0037-8682-0105-2013
https://doi.org/10.1590/0037-8682-0105-2013
http://www.ncbi.nlm.nih.gov/pubmed/26061369
https://doi.org/10.1371/journal.pntd.0008299


8. Bernal JCC, Bisneto PF, Pereira JPT, Ibiapina HNDS, Sarraff LKS, Monteiro-Júnior C, et al. "Bad things

come in small packages”: predicting venom-induced coagulopathy in Bothrops atrox bites using snake

ontogenetic parameters. Clin Toxicol (Phila) 2019; 1–9. https://doi.org/10.1080/15563650.2019.

1648817 PMID: 31387401

9. Calvete JJ, Sanz L, Perez A, Borges A, Vargas AM, Lomonte B, et al. Snake population venomics and

antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications

of geographic venom variability on snakebite management. Journal of Proteomics 2011; 74: 510–527.

https://doi.org/10.1016/j.jprot.2011.01.003 PMID: 21278006
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