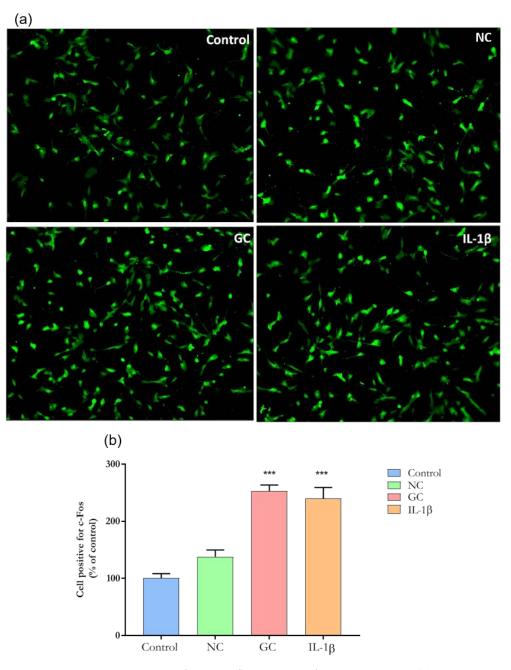


Correction: Bufalo et al. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds. *Cells* 2022, *11*, 247

Michelle Cristiane Bufalo ^{1,2}, Maíra Estanislau Soares de Almeida ^{2,3}, José Ricardo Jensen ⁴, Carlos DeOcesano-Pereira ², Flavio Lichtenstein ², Gisele Picolo ¹, Ana Marisa Chudzinski-Tavassi ^{2,5}, Sandra Coccuzzo Sampaio ^{3,6}, Yara Cury ^{1,*} and Vanessa Olzon Zambelli ^{1,2,*}

- ¹ Laboratory of Pain and Signaling, Butantan Institute, São Paulo 05503-900, Brazil; michelle.bufalo@butantan.gov.br (M.C.B.); gisele.picolo@butantan.gov.br (G.P.)
- ² Center of Excellence in New Target Discovery, Butantan Institute, São Paulo 05503-900, Brazil; mesalmeida@gmail.com (M.E.S.d.A.); carlos.ocesano@butantan.gov.br (C.D.-P.); favio lichteratoin@butantan.gov.br (C.D.-T.)
- flavio.lichtenstein@butantan.gov.br (F.L.); ana.chudzinski@butantan.gov.br (A.M.C.-T.)
 ³ Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil;
- sandra.coccuzzo@butantan.gov.br
- ⁴ Immunogenetics Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; jose.jensen@butantan.gov.br
- ⁵ Innovation and Development Laboratory, Innovation and Development Center, Butantan Institute, São Paulo 05503-900, Brazil
- ⁶ Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, Brazil
- * Correspondence: yarac57@gmail.com (Y.C.); vanessa.zambelli@butantan.gov.br (V.O.Z.); Tel.: +55-11-2627-9765 (Y.C. & V.O.Z.)

Citation: Bufalo, M.C.; Almeida, M.E.S.d.; Jensen, J.R.; DeOcesano-Pereira, C.; Lichtenstein, F.; Picolo, G.; Chudzinski-Tavassi, A.M.; Sampaio, S.C.; Cury, Y.; Zambelli, V.O. Correction: Bufalo et al. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds. *Cells* 2022, *11*, 247. *Cells* 2024, *13*, 1089. https:// doi.org/10.3390/cells13131089


Received: 5 June 2024 Accepted: 10 June 2024 Published: 24 June 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Error in Figure

In the original publication [1], there was a mistake in Figure 8, Similarity between Control and NC figures, as published. The corrected Figure 8 appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Figure 8. Representative images of immunofluorescence of c-Fos expression. (**a**) c-Fos expression in sensory neuron-like cells incubated with ECM-NC, ECM-GC, ECM-NC IL-1 β or medium culture for 1 h. Magnification: $20 \times .$ (**b**) Quantification of c-Fos nuclear expression (% of control). Data were analyzed by one-way ANOVA with post hoc testing by Dunnett (*** *p* < 0.0001 different from Control). NC (normal collagen) and GC (glycated collagen). Three independent and similar assays performed in triplicate.

Reference

 Bufalo, M.C.; Almeida, M.E.S.d.; Jensen, J.R.; DeOcesano-Pereira, C.; Lichtenstein, F.; Picolo, G.; Chudzinski-Tavassi, A.M.; Sampaio, S.C.; Cury, Y.; Zambelli, V.O. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds. *Cells* 2022, *11*, 247. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.