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Abstract: Bioethical limitations impair deeper studies in human placental physiology, then most
studies use human term placentas or murine models. To overcome these challenges, new models
have been proposed to mimetize the placental three-dimensional microenvironment. The placental
extracellular matrix plays an essential role in several processes, being a part of the establishment
of materno-fetal interaction. Regarding these aspects, this study aimed to investigate term mice
placental ECM components, highlighting its collagenous and non-collagenous content, and proposing
a potential three-dimensional model to mimetize the placental microenvironment. For that, 18.5-
day-old mice placenta, both control and decellularized (n = 3 per group) were analyzed on Orbitrap
Fusion Lumos spectrometer (ThermoScientific) and LFQ intensity generated on MaxQuant software.
Proteomic analysis identified 2317 proteins. Using ECM and cell junction-related ontologies, 118
(5.1%) proteins were filtered. Control and decellularized conditions had no significant differential
expression on 76 (64.4%) ECM and cell junction-related proteins. Enriched ontologies in the cellular
component domain were related to cell junction, collagen and lipoprotein particles, biological process
domain, cell adhesion, vasculature, proteolysis, ECM organization, and molecular function. Enriched
pathways were clustered in cell adhesion and invasion, and labyrinthine vasculature regulation.
These preserved ECM proteins are responsible for tissue stiffness and could support cell anchoring,
modeling a three-dimensional structure that may allow placental microenvironment reconstruction.

Keywords: animal models; materno-fetal interface; placental ECM proteomics

1. Introduction

The placenta plays an essential role in conceptus maintenance in the uterine environ-
ment, supplying oxygen, and nutrients and protecting it against harmful exogenous agents
present in maternal blood flow [1]. The materno-fetal interaction has been investigated
to understand the appropriate conditions for embryo and fetal development [2]. Early
complications during embryo implantation impacts directly on placental development
leading to gestational losses [3].

Several studies attempted to comprehend the physiological aspects of human placen-
tation, most of them using explants and derived progenitor cells from unsuccessful or term
pregnancies [4]. Mice placenta has been considered a classic placental model for several
approaches due to their similar hemochorial placenta, including the development of trans-
genic animals for functional and molecular in vivo and in vitro studies [5–9]. In addition,
mice’s placenta advantages include easy manipulation, small size, short generation time,
and genetic homogeneity, followed by several morphological and functional similarities [6].
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Despite these advantages and similarities, new three-dimensional and more versatile
models to better mimetize the human placental microenvironment. For this purpose, tissue
bioengineering strategies, such as placental fragments reconstruction, and applying cells
and biomaterials are being explored [10]. However, information about trophoblast cell
culture in biological scaffolds is scarce.

Placental ECM not only contributes to structural support but also regulates cellular
signaling-modulating processes such as proliferation and motility [11]. These models
can also be applied for physiological and pharmacological assays, such as experimental
vertical infections, toxic molecules investigation, and drug therapies [12]. However, the
use of models that do not properly mimic the placenta environment leads to unreliable
knowledge, which requires alternatives to characterize functional, structural, and molecular
aspects of the placenta [13–16]. To overcome this problem, placental organoids from three-
dimensional (3D) microenvironment culture, simulating the materno-fetal interactions,
have been considered a reliable model to study molecular effects on the placenta [17–21].
Moreover, 3D cultures display better migration and invasion profiles, and resistance to
viral and microbial infections [4,20,22–24].

Human and murine trophoblastic cell populations present a functional dynamism
during placental development [25]. In mice, placental hormonal activity is restricted to
the outer trophoblast layer (syncytiotrophoblast), while transport and barrier functions
are majorly performed by the two inner layers (trophoblast giant cells and spongiotro-
phoblast) [6]. Mice’s placental transcriptional and proteomic profile during each embryonic
stage elucidate several mechanisms in cell interactions, including its organization and mat-
uration [26–28]. Differently, human placenta physiology cannot be precisely understood
only by samples derived from term and unsuccessful pregnancies [4].

A suitable in vitro placental model is highly influenced by ECM tridimensional structure,
where its architectural stiffness is essential [29]. As a transient organ, the placental ECM
presents a unique plasticity profile due to short-time development and loss of function for
placental release [30]. To produce a mouse placenta ECM as an innovative biomaterial to
support cells growth and differentiation [31] is essential to know and maintain its compo-
sition profile based on structural proteins (collagens and elastin), adhesion glycoproteins
(fibronectin, laminin, tenascins, and vitronectin), glycosaminoglycans (hyaluronic acid), pro-
teoglycans (versican, syndecan, glypican, and perlecan), matricellular proteins (osteonectin,
thrombospondin, tenascin, osteopontin) and metalloproteinases (MMP-2 and MMP-9) [32].
Thus, this investigation considered and described the possibility of a new mice placental
model, based on late pregnancy three-dimensional extracellular matrix microenvironment.

2. Material and Methods
2.1. Decellularization Process

Placenta from E18.5 mice (N = 03, in each control and decellularized group) were
obtained according to the protocol established by Barreto et al. [31]. The decellularization
process was carried out using crescent concentrations of SDS (0.01%, 0.1%, and 1%), and 1%
Triton X-100. This study was approved by the Ethical committee on the use of animals (No.
5669271015) from the School of Veterinary Medicine and Animal Science of the University
of Sao Paulo.

2.2. Mass Spectrometry Samples

Control (C1-C3) and decellularized (D1-D3) mice placenta biological replicates (n = 3)
were processed accordingly established by Hedrick et al. [33], Matias et al. [34] and Barreto
et al. [35]. Briefly, samples were homogenized with 1 mL (100 mM) ammonium bicarbon-
ate solution (ABC); precipitated with acetone (1:4) at −20 ◦C for 16 h; reduced with 8 M
urea and 10 mM DTT for 2 h at 37 ◦C; alkylated with 200 µM Iodoacetamide, digested
with 0.1 µg/µL trypsin under a barocycler; and purified in C18 columns (300 Å, #SMM
SS18V, The Nest Group, Inc., Ipswich, MA, USA). The data generated by Orbitrap Fusion
Lumos spectrometer (Thermo Scientific) were deposited in the Mendeley Data database in
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different datasets for control (doi:10.17632/yg5phbft32.1, accessed on 8 October, 2022) and
decellularized (doi:10.17632/wkdsh9kf9t.1 accessed 8 October 2022) groups. The Orbitrap
Fusion Lumos spectrometer has maximized instrument performance and flexibility allowing
more confident, precise, and sensible detection even with a low sample number [36]. In
addition, this instrument associated with a precise pipeline and batch analysis increases the
data trustworthiness [37].

2.3. Data Collection and Bioinformatic Analysis

There was used the Label-Free Quantification MaxLFQ algorithm, a semi-quantitative
protein analysis, from MaxQuant software (version v1.6.10.43) [38] with an FDR rate of 1%
to compare the relative abundance of proteins based on the mice proteins database from
Uniprot/Swissprot, for each control and decellularized mice placenta samples and respective
replicates. Proteins identified in the contaminant database and the decoy database were removed.
For the criterion for protein identification, it was considered that only peptides identified
with the posterior error probability (PEP) ≤ 0.01 in at least one biological replicate, and the
occurrence of at least one unique peptide. We considered the intensity values of the LFQ that
are normalized by the Maxquant software based on the sum of the intensity of all peptides of all
identified proteins. LFQ for each protein was considered when the intensity data were present
in at least two out of three replicates. Further, the protein abundance and log2 fold change
(log2(FC)) for each group were calculated based on the average quantification of biological
replicates, identifying the significantly quantified proteins with a Fold Change higher than
1.5 (|log2(FC)| ≥ 0.585). Following there were conducted the ANOVA and T-test (p < 0.05)
statistical tests to determine the protein p-values, using the Microsoft Excel software (Matias
et al. [34]; Barreto et al. [35]). In addition, proteins that had a zero value in two of the three
conditions were analyzed separately. The data quality was checked by means of correction
graphs and principal component analysis. After, we selected ontologies related to ECM and
cell junctions (Supplemental Table S1) on the cell component domain. Then, the filtered
protein list was used for principal component analysis (PCA), which was applied to find
which combinations of the differentially quantified proteins with a fold change higher than 1.5.
The PCA analysis was performed using the R-statistics package FactoMineR [39] and Factoextra
(http://www.sthda.com/english/rpkgs/factoextra, accessed on 8 October 2022) for graphical
visualization. False Discovery Rate adjustment was calculated by the Bonferroni method.
Enrichment analysis and functional classification for gene ontology terms (“enrichGO” function
from R package clusterProfiler) [40]; proteins enrichment in KEGG pathways (“enrichKEGG”
function from clusterProfiler package and Pathviews package from R) [41]; and biological
network interactions of proteins (NetworkAnalyst [42]). The Clustering analysis was performed
using R statistical software version 3.6.3 (http://www.R-project.org, accessed 8 October 2022).
The set of protein dissimilarities were computed using the “Euclidean” distance with the
function “dist” to the hierarchical clustering based on the package and function “hclust”. There
was employed the agglomerative method with “ward.D2”. All bioinformatics analysis was
performed as described by Matias et al. [34] and Barreto et al. [35].

3. Results

ECM proteomic profiles from control and decellularized mice placenta were analyzed
to determine if the remaining proteins could provide a tridimensional cell culture microen-
vironment. Principal component analysis (PCA, Spearman correlation) initially displayed
that control and decellularized samples were spaced and clustered by biological replicates
in separated quadrants, consistent with their respective condition (Figure 1). On PCA,
decellularized quadrant enriched several collagen types, whereas the control quadrant
enriched proteins related to cell adhesion (i.e., Vtn, Nid1, Lamc, and Ckap4).

The MaxQuant assembling of mass spectrometry detected peptides, generating a list
of 2317 proteins and 118 (5.1%) proteins resulting from ECM and cell junction-related
ontologies filtering. From those proteins, using fold change (higher than 1.5) and p-value
(0.05), 40 (33.9%) proteins were overregulated in control mice placenta, whereas 76 (64.4%)
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had no significant differential expression between control and decellularized conditions.
However, 2 (1.7%) of those were upregulated in decellularized mice placenta (Supplemental
Table S2). From those, there were 76 proteins with no significant differential expression,
several ECM proteins were preserved: collagens (Col1a1, Col4a1, Col4a2, Col6a1, Col6a2,
Col6a3, Col14a1, Col18a1); laminins (Lama1, Lama4, Lama5, Lamb2, Lamc1); Fibrillin
(Fbn1); Fibronectin (Fn1); glycoproteins [Bgn, Hspg2, Nid1] and cell junction-related
proteins [Arvcf, Coch, Emilin1, Esam, Igf2bp1, Itga6, Lad1, Lims1, Mpp5, Parvb, Pak2,
Pdlim1, Pdlim2, Pkp2, Plg, Pvr, Serpine1, Sorbs1, Tjp1, Tjp2, Utrn, Vasp, Vtn]. In addition,
two collagens (Col1a2 and Col5a2) were upregulated in the decellularized placenta. Among
the upregulated proteins in the control condition, some were related to ECM modulation
(Htra1, Htra3, Plod3, Sparc), or cell adhesion (F11r, Itga2b, Itga5, Itgav, Lgals3bp).
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Figure 1. Principal component analysis (PCA, Spearman correlation) plot from control (C1–C3) and
decellularized (D1–D3) mice placenta. Those graphs show the consistency of each sample with their
condition (control and decellularized).

In total, 25 ontologies of the cellular component domain were closely related, form-
ing a unique interaction, with some inferred relationships (dotted lines) (Supplemental
Figure S1). On the biological process domain, 63 ontologies were closely interacted (Sup-
plemental Figure S2), while on the molecular function domain only 21 were interconnected
(Supplemental Figure S3).

Inside the 30 more relevant ontologies from each of the three domains, we found
11 (36.7%) ontologies related to cell junction in the cellular component domain, six (20%)
related to collagen, and another six (20%) related to lipoprotein particles (Supplemental
Figure S4). In the biological process domain, 10 (33.3%) ontologies were related to cell
adhesion, six (20%) to the vasculature, five (16.7%) to proteolysis, and three (10%) to ECM
organization (Supplemental Figure S5). Finally, among the molecular function domain, 16
(53.3%) were related to protein binding, 11 (36.7%) to protein activity, and three (10%) with
ECM resistance (Supplemental Figure S6).

The major pathways which enriched more proteins were: Focal adhesion (30.5%), ECM-
receptor interaction (28.0%), Human papillomavirus infection (28.0%), PI3K-Akt signaling
pathway (26.8%), Complement and coagulation cascades (19.5%) and Proteoglycans in cancer
(14.6%) (Figure 2). Together those pathways enriched several collagen types and integrins.
Other pathways were also enriched on several proteins (Supplemental Figure S7). The
constructed String DB interactome assembled 80 (68%) proteins in just one cluster (Figure 3),
showing the proteins’ major amounts are interconnected and have interacted function.
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versus decellularized mice placenta. The upregulated proteins are in red color and the downregulated
ones in green color. (A). Proteoglycans in cancer pathway. (B) Focal adhesion pathway. (C) PI3K-
AKT signaling pathway. (D) ECM-receptor interaction. (E) Complement and coagulation cascades
pathway. (F) Human papillomavirus infection pathway.
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a strong functional relationship between them. The connecting nodes indicate protein-protein
interactions with medium interaction confidence of 0.4.

4. Discussion

This study described the ECM-related protein profile on late gestation mice placenta
after the decellularization process to verify if the derived scaffold was suitable to provide a
tridimensional microenvironment model for cell culture and bioengineering.

Several proteins were kept after the decellularization process, demonstrated by similar
detection in control and decellularized tissues. Within those proteins, the different collagen
types observed are involved in fibril-forming (Col1a1), basement membrane (Col4a1 and
Col4a2), beaded filament-forming (Col6a1, Col6a2a, and Col6a3), anchoring fibril-forming
(Col6a1, Col6a2a, Col6a3, and Col14a1), and multiplexing (Col18a1) collagens [43]. The
collagen type presence on decellularized placenta attests to the tridimensional architecture
preservation, since this architecture is assembled by collagen fibers, where the thicker ones
(60–330 nm) are supportive, and the thinner ones (15–30 nm) complement the ECM lattice
structure, keeping labyrinthine capillary net and other structures [31,44]. Furthermore,
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different collagen fibers stabilize the structure by anchoring themselves with other ECM
molecules and neighbor cells [45].

Other non-collagen proteins that also present structural and adhesive functions, such
as laminins (Lama1, Lama4, Lama5, Lamb2, Lamc1), fibrillin (Fbn1), and fibronectin (Fn1),
were preserved as well. These proteins usually have binding domains to several collagen
types, adding strength to the tridimensional structure maintenance [46]. Results related to
the ECM architecture and ultrastructural organization after decellularization were already
shown in mice and other rodents [31,44], bovine [35,47], and canine [48,49], which described
the vascular architecture maintenance, and basement membrane proteins preservation. In
addition, laminin, fibronectin, and vitronectin, together, interact with integrin receptors
of trophoblastic cells, promoting their adhesion [50,51]. Integrin spatial distribution is
variable in different placental compartments, like villous and extravillous trophoblasts
in humans [52] and labyrinth, junctional zone, and decidua in mice [53]. Moreover, tro-
phoblast cell lines migration and invasion depend on integrins, which are transmembrane
glycoprotein receptors that regulate cell differentiation, motility, and adhesion by cytoskele-
tal reorganization [54–56]. Altogether, those preserved collagens and non-collagenous
proteins are enough to support several phases of tissue reconstruction, providing the basic
microstructure for adhesion, migration, and cell differentiation [48,57].

From the cellular component domain, the ontologies related to cell junction, collagen,
and lipoprotein particles were the most enriched ones. These collagen types bind to
domains of several adhesive and transmembrane proteins, attaching the cells to each other,
to the basement membrane, or to ECM [46]. Cell junction and collagen ontologies are
related to each other, and their proteins were maintained in decellularized mice placenta.
Placental lipoprotein particle ontology is also essential for syncytiotrophoblast hormonal
metabolism, as well as for high fetal requirements [58].

From the biological process domain, the enriched ontologies were related to vascula-
ture, cell adhesion, proteolysis, and ECM organization. For vasculature modulation, such as
ECM organization, the microenvironment modulation is dependent on the proteolysis, by
hydrolytic proteins, to degrade the natural ECM structure, and control ECM deposition [45].
Furthermore, one of the control mechanisms for cell adhesion and detachment is the pro-
teolysis of adhesive proteins, which is responsible for binding the cell membrane to the
ECM structure [59,60]. Additionally, in the molecular function domain, the protein binding,
protein activity, and ECM resistance ontologies were enriched. These three ontologies are
closely related, because the ECM resistance is more dependent on their protein structural
arrangement, instead of protein amount [61,62].

From the enriched pathways, we could cluster them in cell adhesion and invasion, and
labyrinthine vasculature regulation for placental nutrition. The focal adhesion pathway was
the one with more proteins enriched, being closely related to key signaling for cell adhesion
or detachment. Focal adhesion is a multi-protein complex structure on the cell membrane
that anchors the cytoskeleton directly to ECM, giving the ability for the cell to respond to
chemical or physical changes [63]. ECM-receptor interaction pathway mediates the direct
or indirect interaction between ECM and transmembrane molecules (majorly integrins and
proteoglycans), to control several cell functions and invasiveness [64]. Proteoglycans in
the cancer pathway play an important role in cellular adhesion and invasion and control
proteoglycan location and function through microenvironment enzyme alterations [65].
The human papillomavirus infection pathway in the placental microenvironment can be
related to increased cell proliferation and p53 signaling inhibition. Likewise, the PI3K-Akt
signaling pathway regulates trophoblast cell proliferation by decreasing apoptosis [66,67].
Complement and coagulation cascades pathway are related to support unclothed blood
in the labyrinthine blood sinus to maintain syncytiotrophoblast nutrition and support
hypercoagulation during labor [68,69].

The ECM biology supports placental physiology, and any placental dysfunctions
rapidly lead to ECM modification in structure and/or composition, such as in preeclampsia
and intrauterine growth restriction [70–73], hypoxia [74], and cloned pregnancies [35,75].
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Even in normal placentation, the placental ECM is plastic and intensely modulated due to
decidualization, placental development, and fetal requirement [45].

Furthermore, the placental ECM protein content is a key to in vitro placental mod-
eling [76]. Decellularized placental ECM has a large potential to be used for modeling
materno-fetal interface due to several difficulties in conducting in vitro experiments using
primary placental cells and chorionic villous explants [77]. Besides ECM composition,
ECM stiffness also influences cell physiology, which can range from 0.2 kPa in the brain
to 106 kPa in bone. Generally, the substrates used in cell culture have a stiffness different
from the placenta tissues and directly influence placental cell survival [29]. For example,
Matrigel® has a stiffness of 331 Pa, whereas decidua basalis and parietalis have 1250 and 171
Pa, respectively [29]. The placental ability for materno-fetal circulation gas exchange [78],
and their complex vascular network [79] can be translated to lung modeling [80]. In ad-
dition, the placenta can be approached for clinical translation, optimizing in vitro barrier
models for vertical transmission studies, and elucidating the effect of harmful molecules
and pharmaceutical therapies.

Moreover, the ECM can influence normal and/or abnormal cell progression [81], such
as in tumor progression and metastasis. However, ECM structure and stiffness can be
altered by tumoral development (Barreto, unpublished data). On the other hand, bronchial
asthmatic ECM received smooth muscle cells and they recellularized the bronchial scaffold,
showing success [82]. Another example refers to ECM-derived hydrogel’s positive effects
on pulmonary fibrosis treatment [83]. However, several in vitro models do not perfectly
mimetize a species-specific placental environment [84,85]. Altogether, herein the detected
ECM proteins, ontologies, and pathways support the idea that the decellularized mice
placenta preserve a stable tridimensional microenvironment for materno-fetal in vitro
modeling to reach multiple approaches on placental biology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10010016/s1, Please see the Supplementary Figures
S1–S7 and Tables S1 and S2.
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