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Abstract: The dysregulation of complement system activation usually results in acute or chronic
inflammation and can contribute to the development of various diseases. Although the activation
of complement pathways is essential for innate defense, exacerbated activity of this system may be
harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system
may be important tools in therapy for diseases associated with complement system activation. The
synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively
inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a
robust model for studying the complement system. The aim of the present study was to use in
silico computational modeling to investigate the hypothesis that these complement system inhibitor
peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For
this, we analyzed molecular docking interactions between peptides and target molecules. Our
study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their
respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for
therapeutic studies on these inhibitors.

Keywords: Cp40; PMX205; C3a; C5a; C5aR1

1. Introduction

The complement system is governed by a cascade of enzymatic events that provide
hosts with one of the first mechanisms for innate immune defense. It is composed of over
fifty blood-circulating and cell-surface-expressed proteins that participate in the recognition
and clearance of invading pathogens. The activation of the complement system can occur
through three pathways, classical, lectin and alternative, all of which converge for the
cleavage of the central complement component C3 through the action of C3 convertases [1,2].
The cleavage of the C3 component leads to the generation of two fragments, C3b and the
anaphylatoxin C3a. C3b is involved in the formation of C5-convertase which, in turn,
cleaves C5 into C5b and the anaphylatoxin C5a. C5b interacts with C6, C7, C8 and several
C9 proteins to form the membrane attack complex (C5b-9n or MAC), which generates
a lytic pore on the target membrane. The anaphylatoxins C3a and C5a are potent pro-
inflammatory mediators, via their interactions with specific receptors such as C3aR and
C5aR1 [2]. Thus, the complement system is an important contributor and amplificatory
mechanism for inflammation if activated in excess or if inappropriately controlled.

The complement system is involved in the pathogenesis and clinical manifestations
of several systemic diseases, such as systemic lupus erythematosus (SLE) [3,4], vasculi-
tis [5], antiphospholipid antibody syndrome [6], systemic sclerosis [7], dermatomyositis [8],
rheumatoid arthritis [9], AMD [10], Alzheimer’s disease [11] and asthma [12], among
others. The large number of pathological conditions in which the complement system is
involved has stimulated the development of therapeutic interventions [13]. Thus, various
components of this system, such as the anaphylatoxins and their receptors, have been
considered promising therapeutic targets in inflammatory diseases [14,15].
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The zebrafish (Danio rerio) is a model for studies relating to immunology, pharma-
cology, toxicology, cancer, neurodegenerative diseases, inflammation and other condi-
tions [16–22]. It forms a versatile model in research terms and its use is well disseminated,
given that its maintenance and reproduction are not complex and that its body is trans-
parent during its initial development [23]. Moreover, the costs of zebrafish maintenance
are advantageous in comparison with rodents; implementation of transgenic models is
possible; and the growth and development of zebrafish are rapid [24–26]. The zebrafish
complement system is structurally and functionally similar to that of humans, and these
fish express homologs for all of the fundamental mammalian complement components [27].

As mentioned above, although the complement system forms a means of defense
for hosts, exacerbated responses may lead to a change from a homeostatic state to a
physiopathological state, thus resulting in severe immunological and inflammatory dis-
orders [2,28]. One alternative for controlling the inflammatory process would be to use
specific inhibitors of the complement system and its respective receptors and molecules,
such as synthetic peptides [29,30] with neutralizing or modulatory action. Among the
synthetic peptides with the greatest potential for inhibiting the complement system are
Cp40, which inhibits conversion of C3 to C3b [31,32], and the second generation of PMX53,
i.e., PMX205, which selectively blocks receptor 1 of C5a [33].

The analog peptide of compstatin Cp40 (Tyr(D)-Ile-[Cys-Val-Trp(Me)-Gln-Asp-Trp-Sar-
Ala-His-Arg-Cys]-mIle-NH2) presents a high affinity to the human C3 molecule. Through
its binding to intact C3 and/or the C3b fragment, it is capable of inhibiting the activation
of the complement system [34]. Cp40 has been considered to be a potential therapeutic
agent in models for various diseases of inflammatory or autoimmune nature, including
sepsis [35,36], periodontitis [37], envenomation [38,39], hemorrhagic shock [40], nocturnal
paroxystic hemoglobinuria [31] and autoimmune anemia [41]. Most recently, it has been
demonstrated that it is capable of improving survival and reducing hypoxia in patients
with severe COVID-19 [42].

PMX205 (N(2)-(3-phenylpropanoyl)-L-Orn-L-Pro-3-D-Cha-L-Trp-L-Arg) is a peptide
antagonist to C5aR1. This molecule has been used as a pharmacological tool and thera-
peutic agent in experimental models for inflammatory diseases, including amyotrophic
lateral sclerosis [43], colitis [44], meningococcal meningitis [45], Alzheimer’s disease [46],
envenomation [38,47] and periodontitis [48].

The interaction between a drug and its receptor can be assessed at an early stage
through in silico studies to provide a better understanding of the mechanism of action of
this drug, prevent side effects and contribute towards the development of next-generation
drugs [49,50]. In the present study, we used computational approaches together with
bioactivity databases in order to assess predictions for Cp40 and PMX205 in relation to
the C3 molecule and the C5aR1 receptor of the zebrafish complement system. Thus, we
aimed to predict the 3D structure of the peptides and their biochemical characteristics,
their target-protein binding and docking properties and the dynamics of competition or
interaction of the protein/receptor complex. Our results provide a new perspective for the
use of the zebrafish model for studying the activation and inhibition of the complement
system and also suggest that, besides PMX205, Cp40 may also be used as a complement
inhibitor in the zebrafish model.

2. Results
2.1. Analysis on the Homology of C3 Molecules in D. rerio and H. sapiens

The mature C3 molecule is composed of two chains, α and β. This component
possesses the same composition of domains and the same number of chains in both D. rerio
and H. sapiens. Figure 1 shows the alignment of the amino acid sequences of the β chain of
the C3 component from humans and zebrafish. The β chain of the C3 molecules from these
two species present 63.7% similarity and 43.9% identity in their amino acid sequences.
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Figure 1. Homology analysis between the β chains of C3 molecules from H. sapiens and D. rerio. The
FASTA sequences CO3_HUMAN and Q3MU74_DANRE were obtained from the UniProt database
(http://www.uniprot.org), and their similarity and identity were evaluated on the Espript platform
(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). Similar amino acid sequences in the two species
are shown in red, and the similarity of the secondary structures is shown by the symbols β, α and η.

2.2. Comparative Structural Analysis on the C3 Molecules in D. rerio and H. sapiens

Figure 2a,b shows a comparative analysis of the C3 β-chain proteoforms from H.
sapiens and D. rerio; the presence of similar amino acid sequences is marked in blue. This
comparative evaluation of the physicochemical properties of the C3 β-chain MG4 and
MG5 domains between the species revealed that hydrophobic areas were predominant
in the H. sapiens molecule, while positive and negative areas were more abundant in D.
rerio (Figure 2c). The area of the binding site shows sets of hydrophobic amino acids,
heterogeneously distributed between the species, and the same was observed for positive
and negative charges. The values of the number of amino acids and their areas of occupation
are shown in detail (Figure 2d). However, when we evaluated the networks formed by
hydrogen bonds, the simulation of the MG4-5 domains of D. rerio showed nine networks in
the region of the Cp40 binding site, versus seven in H. sapiens (Figure 2e). In detail, neutral
charge was found to predominate on the Cp40 binding surface of the two proteins. On the
other hand, hydrophobicity was heterogeneously distributed between the two proteins,
with a predominance of hydrophilic areas (Figure 2f). Lastly, when Cp40 was evaluated, a

http://www.uniprot.org
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
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predominance of hydrophobic areas and areas isolated from positive and negative charges
was observed (Figure 2g).
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Representation of C3 proteoforms (residues 1-645) from D. rerio and H. sapiens showing similar 
peptide sequences between species, as identified in blue; (c) structural and physicochemical 
characteristics of the C3 β-chain MG4 and MG5 domains in three-dimensional form showing the 
properties of amino acid residues in terms of hydrophobicity and positive and negative charges; (d) 
graphs showing the distribution of these amino acids according to area in Å; the networks are 
numbered and correlated with the color of the residuals; (e) distribution of hydrogen bond networks 
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on the surface between the ligand and the receptor at the binding site, is shown in detail, and in (g) 

Figure 2. Comparative analysis on the C3-molecule β chains from D. rerio and H. sapiens. (a,b) Repre-
sentation of C3 proteoforms (residues 1-645) from D. rerio and H. sapiens showing similar peptide
sequences between species, as identified in blue; (c) structural and physicochemical characteristics of
the C3 β-chain MG4 and MG5 domains in three-dimensional form showing the properties of amino
acid residues in terms of hydrophobicity and positive and negative charges; (d) graphs showing the
distribution of these amino acids according to area in Å; the networks are numbered and correlated
with the color of the residuals; (e) distribution of hydrogen bond networks in the MG4 and MG5
domains; the circle drawn shows in detail the regions of the binding site based on the PDB model:
2QKI. In (f), the distribution of areas according to charges and hydrophobicity, on the surface be-
tween the ligand and the receptor at the binding site, is shown in detail, and in (g) the charge and
hydrophobicity properties of Cp40 are exhibited. The numerical sequences refer to the colors that
represent each network of hydrogen bonds.
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2.3. Docking-Based Screening of C3 and Cp40 Interactions in D. rerio

The first virtual screening to determine specific and non-specific interactions, based
on cavitation and blind docking, generated ten interactions or models (Figure 3a) of which
only Model 8 of the D. rerio C3–Cp40 interaction was specific or close to the model-based
binding site (PDB ID: 2QKI), while Models 7 and 10 for the H. sapiens interaction were
close to the binding site (Figure 3b). Next, upon confirming the possibility of interaction
between Cp40 and C3 from D. rerio, a second docking using a hybrid fitting strategy was
performed, which provided input data and directed the interactions to the receptor-binding
amino acid residues generated in Model 8#. This model presented the central location
coordinates (x, y, z) closest to the binding site (PDB ID: 2QKI) (Figure 3c) and the chosen
residues are shown in detail, in association with cavitation/pockets between the MG4 and
MG5 domains (Figure 3(c.1)). Analysis on the directed docking showed that all interactions
were directed towards the activity site area in D. rerio C3 (Figure 3d). Model 2 (Figure 3e)
showed considerable values for the docking score (−116.71) and confidence score (0.3394).
Moreover, the flexibility of this connection (Figure 3(d.1)) was closest to Model 0 and the
crystallographic model (PDB ID: 2QKI). Redocking reshaped Template 2 and adjusted the
peptide flexibility to improve fitting and similarity with the crystallographic template.
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the MG4 and MG5 domains of the D. rerio C3 β chain. Other interactions/models outside the circle
are unspecific links; (b) H. sapiens C3 β chain docking showing two model-specific interactions
(7 and 10) and other non-specific bindings; (c) shows the top ten interactions based on cavitation
and blind docking; (*) represents H. sapiens values and (#) shows model 8#, selected according to
position associated with the Cp40 activity site and the compstatin 2QKI crystallographic model.
(c.1) Interaction of Cp40 with the main C3 binding amino acid residues in the orthosteric binding
pocket between the MG4 and MG5 domains of Model 8#. (d) Docking based on the amino acid
sequence of Model 8 (d.1) shows three interactions: model 0 (blue), based on prediction according to
template-based blind docking; compstatin linked to C3 of H. sapiens (red), based on model 2QKI; and
model 2 (yellow), chosen from the positions and values shown in the (e). The chains overlap between
H. sapiens (purple) and D. rerio (grey), and the MG4 and MG5 domains distinguish the two domains.
The numeric sequences refer to the colors that represent each docking interaction model.

2.4. In Silico Analysis on the Interaction of Cp40 with the C3 Molecule in D. rerio

For the docking analysis, the β chain of the C3 molecule from D. rerio was constructed
(Figure 4(a,a.1)). Our results showed that Cp40 binds to the β ring of the C3 β chain of D.
rerio, located between domains MG4 and MG5 (Figure 4(a.1)), a position similar to that of
its interaction with the human C3 molecule.
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structural alignment of the β chain of the homologous molecule of D. rerio (purple); (I) comparison of
the binding of Cp40 to the domains MG4 and MG5 of the β ring in H. sapiens (purple) and D. rerio
(yellow); (b,c) docking of the protein–binder interaction between C3 and Cp40 in the two species;
(b.1,c.1) spatial interaction of Cp40 at the binding site; (d) redocking, showing the flexibility of the
peptide Cp40 at the C3 binding site of D. rerio; (d.1,d.2) the two main interactions with greatest
binding force, obtained through the FlexPepDock platform; (d.3) graph of RMSD (x-axis) vs. score
(y-axis) of the ten models created through simulations; (e,f) main interactions of amino acid residues
from the pocket of the β chain and the Van der Waals binding force, with binder residues: (e) D. rerio
and (f) H. sapiens. The PDB C3 file for D. rerio was built in the Swiss model, using the reference 5fo8 of
H. sapiens, and the Hdock Serve platform for docking. Macroglobulin domain (MG); binding domain
(LNK); cleavage site of the alpha chain (NT); anchor (hydrogen bridge binding to the MG7 domain).

In the C3 structure of D. rerio, Cp40 interacted with a smaller part of the β ring
(of around 10 aa), compared with the interaction of the inhibitor with the human C3
(Figure 4(b.1,c.1)). In the redocking of the complex, i.e., β chain/Cp40, this difference was
corrected and a greater number of amino acids of the β ring seemed to interact with Cp40
in D. rerio (Figure 4(d.1,d.2)). Figure 4(d.3) shows the quadratic deviation measurements
(RMSDs) of the mean distance between the overlapping protein atoms for each of the
200 simulated models, and the values are expressed in msBB vs. score.

Overall, the interaction between the β chain of D. rerio C3 and Cp40 (Figure 4e) includes
three strong hydrogen bonds, among the glycine residues GLY-336, GLY-445 and asparagine
ASN-446 of C3, with the respective residues of Cp40, glutamine GLN-5, histidine HIS-10
and isoleucine ILE-1. In H. sapiens (Figure 4f), three hydrogen bonds also form between
the β chain and Cp40: threonine THR-385, GLY-339 and arginine ARG-450. These residues
interact with threonine THR-4, valine VAL-3 and glutamine GLN-5 of the binder. However,
the three residues of the C3 of D. rerio present stronger hydrogen interactions with Cp40
than those of the binder to the human molecule.

2.5. Analysis of the Homology of the C5aR1 Molecules in D. rerio and H. sapiens

Figure 5 shows the alignment of the C5aR1 molecules of humans and D. rerio. They
present 56.9% similarity and 39.1% identity, in comparison to using the FASTA sequence.
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(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). Similar amino acid sequences in the two species
are shown in red, and the similarity of the secondary structure is shown by the symbols β, α and η.

2.6. Comparative Structural Analysis on C5aR1 in D. rerio and H. sapiens

The proteoform of the C5aR1 molecule from D. rerio presents a composition of seven
transmembrane loops (Figure 6a,b). The C5aR1 molecules from D. rerio and H. sapiens
(Figure 6c) predominantly present a neutral charge, with a hydrophobicity region in the
intramembrane portion. In the extra and intracellular portions of the protein, we observed
hydrophilic regions and mixed positive, negative and neutral charges. Analysis on the
cavitation of C5aR1, in the two species, revealed a main site for binding with PMX205
(Figure 6(c.1)). D. rerio presents a pocket of greater volume that suggests that it has greater
flexibility for interaction with the binding peptides (Figure 6d). In the comparative analysis
on C5aR1, the distribution of hydrophobic areas and areas with positive charges was
greater in C5aR1 of D. rerio, while areas with negative charges were greater in H. sapiens
(Figure 6e,f). Analysis and comparison of the distribution of networks formed by hydrogen
bonds in C5aR1 of H. sapiens and D. rerio showed that two networks were identified in both
species. Network 1 of the two species is located at the same coordinates, and network 2 at
different coordinates, but both are located at the binding site (Figure 6g).
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physicochemical characteristics of C5aR1, showing charge and hydrophobicity; (c.1) arrows point to
the C5aR1 cavitation and show the PMX205 receptor binding pockets and (d) the volume of the pock-
ets; (e) structural and physicochemical characteristics of C5aR1 in three-dimensional form, showing
the properties of amino acid residues in terms of hydrophobicity and positive and negative charges;
the graphs (f) show the distribution of these amino acids according to the area in Å; (g) distribution
of hydrogen bond networks. The numerical sequences refer to the colors that represent each network
of hydrogen bonds.

2.7. Docking-Based Screening of C5aR1 and PMX205 Interactions in D. rerio

The modeling of PMX205-C5aR1 followed the same path, and the first screening based
on cavitation and blind docking generated ten interactions or models for D. rerio (Figure 7a)
and H. sapiens (Figure 7b). Among the ten models generated, only Model 1# for D. rerio
presented an association with the interaction site based on the well-resolved model (6C1R),
while for H. sapiens associations were shown in models 1#, 4 and 7. Model 1#, in common
between the two species, demonstrated close cavitation and location values (center x, y,
z) (Figure 7c), thus directing the amino acid residues of Model 1# for use as input data
for hybrid fitting. The result from this modeling generated ten models for each species
and, out of these ten interactions for D. rerio, eight models (1–7 and 10) were located at the
binding site based on the crystallographic model and two models (8–9) at nonspecific sites
(Figure 7d), whereas for H. sapiens all models were directed to the binding site (Figure 7e).
Comparison between the species showed that the values were close (Figure 7f). However,
even though Model 1 for D. rerio presented the best docking score (−200.90) and confidence
score (0.7346) through analysis using the docking location criterion, which was close to the
crystallographic model (6C1R), Models 6# and 7# stood out (Figure 7f) and were directed
towards redocking. Hence, the model of choice was Model 6#.
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Figure 7. Virtual screening for the detection of the best D. rerio PMX205–C5aR1 interaction. (a) Dock-
ing showing specific interactions inside the drawn circle and non-specific ones outside the circle;
(b) anchoring of PMX205-C5aR1 from H. sapiens showing model 1# specific interaction and other
non-specific binding; (c) shows the top ten transients with regard to cavitation and blind docking;
(*) H. sapiens values and (#) Model 1 selected through the position associated with PMX205 activity
site based on crystallographic model 6C1R; (d) docking based on the amino acid sequence of Model 1#
(Figure (c)), showing eight specific interactions inside the circle and two outside the circle representing
nonspecific simulations from D. rerio; (e) for H. sapiens, all interactions were specific; (f) shows the
values used for choosing the best interaction. (*) H. sapiens values. The numeric sequences refer to
the colors that represent each docking interaction model.

2.8. In Silico Analysis of the Interaction of the Inhibitor PMX205 with C5aR1 in Danio rerio and
H. sapiens

The peptide PMX205 is shown in its 3D form in Figure 8a. The interaction of the
PMX205–C5aR1 complex in D. rerio occurred at the same site as this interaction in humans
(Figure 8I). The docking analysis on the binder–receptor interaction for the two species is
shown in Figure 8(c.1,d.1). The details of the peptide interaction with C5aR1 are presented
in Figure 8(c.2,d.2). This shows that there was better occupational coupling of PMX205 to
the pocket of C5aR1 in D. rerio. The main interactions between the amino acid residues of
the receptors of D. rerio and H. sapiens and the binder, based on hydrogen bonds, are shown
in detail in Figure 8(c.3,d.3).
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Figure 8. In silico analysis of the interaction of PMX205 with C5aR1 in D. rerio and H. sapiens. (a) 3D
structure of PMX205 in the mol2 format of the ChemSpider database; (b) structural overlap of H.
sapiens C5aR1 (grey) and homologous molecule of D. rerio (blue); (I) comparison of the PMX205–C5aR1
interaction between H. sapiens (purple) and D. rerio (pink); (c,c.1,d,d.1) docking of protein–binder
interaction between C5aR1 and PMX205; (c.2,d.2) interaction of PMX205 with the binding site, in
detail; (c.3,d.3) main amino acid residues of the receptors of H. sapiens (c.3) and D. rerio (d.3) and Van
der Waals binding force with binder residues. The PDB C5aR1 file for D. rerio was built in the Swiss
model, using the reference based on the crystallographic model 6C1R of H. sapiens, and the CB-Dock
platform for docking.

3. Discussion

The zebrafish model has been considered for studying the complement system since
some of the components involved in the activity and regulation of the pathways of this
system have been identified and cloned, including the proteins C1q [51], C4 [52], factor
B [53], C3 [54], MBL [55], factor H [56], properdin [57] and CD59 [58]. Other regulatory
factors of the complement system have been observed in studies on the induction of
inflammatory responses in zebrafish [59]. Furthermore, high-resolution genome mapping
and comparisons with the human genome have shown that the human genome has a
similarity of approximately 70% with orthologous genes of zebrafish, thus emphasizing the
biological reliability of this model [60].

Various studies have demonstrated that the use of inhibitors of the complement
system is a promising therapeutic strategy for curbing the persistent uncontrolled activation
of this system. Such activation contributes to the development of various pathological
conditions [61]. Cp40, a member of the compstatin family, is one of the promising inhibitors
of the complement system, since it binds to the central component of the cascade, the C3
molecule, and blocks its cleavage with C3 convertases [62]. While Cp40 in humans and
non-human primates shows high levels of inhibitory activity in relation to the complement
system, it has been shown that in mice, rats, rabbits, dogs and pigs, compstatin analogues
do not present any notable inhibition of activation of the system [63]. On the other hand,
Cp40 action in the zebrafish model remains obscure. Given that the binding region of
Cp40 has been identified in the C-terminal portion of the β chain of C3 [64], and that
zebrafish possess conserved complement molecular pathways compared with humans [65],
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the findings from the present study throw light on the hypothesis of the possible interaction
between Cp40 and C3b in zebrafish.

Virtual prediction of protein structures using artificial intelligence has been well
postulated in the literature and important advances have been made with regard not only
to prediction and protein structure studies [66,67], but also to structure refinement [68],
topology [69] and virtual docking interaction [70]. Thus, in the present study, servers and
platforms that already existed were used. We found that these were highly reliable for
predicting the protein structure, without any need for a new programming language to
perform the analyses. We are aware of the limitations of in silico studies and we therefore
intend to test these complement inhibitors in vivo in further studies, using zebrafish as a
model for diseases associated with complement system disorders.

The present hypothesis can be initially supported through comparative structural
analysis on the C3 molecule between H. sapiens and D. rerio. The mature human C3 molecule
is composed of two chains, β (residuals 1–645) and α (residuals 650–1641), which together
form thirteen domains, i.e., eight macroglobulin domains (MG1-8), one linker domain
(LNK), one anaphylatoxin domain (ANATO), one CUB domain, one domain containing
thioester (TED) and one C345C domain [71]. The C3 components of D. rerio have the same
domain composition and the same number of chains. Furthermore, the similarity in the
amino acid composition and structural identity of the β chain of C3 molecules in H. sapiens
and D. rerio strengthens the possibility that peptide–protein interactions may indeed be
possible (Figures 1 and 2a,b).

Another promising complement inhibitor is the cyclic peptide PMX205, a potent C5aR1
antagonist [33]. The human C5aR1 molecule is composed of 350 amino acids [72]. The
activation of C5aR1 in humans requires the binding of C5a to two distinct sites: the main
one, which is located in the extracellular N-terminal portion (amino acids 2-22), and another
signal-transducing site, which is formed by the extracellular portions of α-helices III, VI
and VII [73–76].

Structural analysis on C5aR1 in D. rerio showed a structural similarity to the hu-
man homologous receptor and some amino acid sequences paired with this receptor
(Figures 5 and 6a,b). The general structure of human C5aR1 consists of a canonical helical
arrangement of seven transmembranes (TM1–TM7) and an orthosteric site for class A
G-protein-coupled receptors. Another important piece of evidence comes from a model
based on the 6C1R crystallographic model, in which the interaction of PMX53 linked to the
orthosteric pocket of C5aR1 formed a structure similar to the β strand [77]. This evidence,
together with the docking results, suggests that the interaction between PMX205 and C5aR1
in D. rerio, located in the same orthosteric binding pocket as PMX53, occurs similarly to the
interaction seen in the human model.

The composition of protein surfaces determines both the affinity and the specificity of
protein–protein interactions. Moreover, the matching of hydrophobic contacts and charged
groups at the two interface sites is crucial for ensuring specificity [78]. Among these,
hydrophobic interaction seems to have an important effect on the molecular interaction
between Cp40 and the zebrafish C3 molecule. Although the total hydrophobic areas of
the MG4 and MG5 domains of H. sapiens are more abundant, considerable numbers of
hydrophobic amino acid chains are present on the surface of the Cp40 binding site in
zebrafish (Figure 2c,d). Furthermore, all of the amino acids of Cp40 present a hydropho-
bic characteristic that can facilitate molecular interaction (Figure 2g). Shekhawat et al.
(2022) [79] used docking analysis on human RBD-ACE2 protein interaction to show the
importance of hydrophobic interaction, and the same was demonstrated in our results.

The most abundant distribution of positive and negative charges on the surface of
the MG4 and MG5 domains was on C3 in D. rerio (Figure 2c,d,f). This suggests that
charge-based molecular interaction may be associated with the C3–Cp40 interaction in the
zebrafish molecule. It has been shown that charged residues in Cp40 play important roles
in molecular interaction [63]. In the present study, the measurement of the third binding
force based on hydrogen bonds showed that the network of hydrogen bonds in D. rerio was
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more abundant than in H. sapiens, especially at the Cp40 binding site between the MG4 and
MG5 domains.

Cavitation analysis on C5aR1 showed the main site for binding with PMX205 in the
two species. In zebrafish, the receptor was found to have a pocket with greater volume,
which probably conferred better ability to accommodate the inhibitor (Figure 6c,d). In
the context of molecular bonds, possibly the most relevant of these was the hydrophobic
interaction, since the C5aR1 receptor presents an abundant hydrophobic area, especially
in D. rerio. The distribution of positive and negative charges in C5aR1 in D. rerio was less
abundant than in the homologous molecule of H. sapiens, and this result suggests that,
to some extent, the binding of PMX205 to the activity site may also be associated with
ionic bonds (Figure 6e,f). The distribution of hydrogen bonding networks was in fact more
abundant in the intracellular region of C5aR1, while there were only two networks located
in the orthosteric site of the receptor, in both species. Nonetheless, despite the possibility
that hydrogen bonding is correlated with PMX205–C5aR1 interaction, the reduction of these
networks at the orthosteric site may mean that other chemical interactions are more closely
related to this interaction. Lastly, the combination of these intermolecular binding forces is
crucial for peptide–protein interaction, and this acts directly on the energy expenditure of
the ligand–receptor interaction.

Continuing with this hypothesis, the peptide–protein interaction was validated through
two docking simulations that showed specific and nonspecific bindings for the two interac-
tions of Cp40-C3 with PMX205-C5aR1, for both species in the first screening (Figure 3c). In
the second Cp40-C3 screening, in the docking directed by the receptor binding residues,
specific centralized bindings could be seen. These resulted in more than 10 models for
fitting at the binding site. Furthermore, the magnitudes of the ten interactions were similar
between the two species (Figure 3e). Thus, in order to choose the best interaction, the
effectiveness of Cp40 binding was evaluated using the docking score (−116.71), confidence
score (0.3394) and ligand RMSD (8.22), given that this binding is directly correlated with
the location of docking in the active site region, as previously postulated for the 2QKI
crystallographic model.

In the literature, the binding region for Cp40 was identified in the C-terminal portion
of the β chain of the human C3 molecule, and crystallographic analysis revealed a binding
pocket formed by macroglobulin (MG) domains 4 and 5 [64]. Furthermore, the interaction
site of Cp40 with the zebrafish C3 molecule was also similar, and was present between
residues 578 and 645, inserted in the MG4 and MG5 domains in a similar way to the
interaction with the human molecule [80].

In the present study, we also evaluated the interaction of PMX205 with C5aR1 in
both zebrafish and humans in silico. The peptide–protein interaction was validated using
the neural network. Through screening the interaction based on PMX205–C5aR1 dock-
ing between the species, a predominance of nonspecific bindings was observed in both
simulations, for H. sapiens and D. rerio (Figure 7c). However, D. rerio presented two spe-
cific interactions, whereas H. sapiens had only one interaction, located at the binding site.
Compared with the result from the second docking on the Hdock platform (Figure 7f), the
PMX205–C5aR1 interaction of H. sapiens ended up centralizing the 10 models only in the
binding site, unlike D. rerio, which showed two nonspecific interactions. Despite this, the
docking score values for interactions/Models 6 and 7 of D. rerio were higher than those
of H. sapiens. This evidence may suggest that the PMX205–C5aR1 interaction occurs in
the biological system of D. rerio. The action of PMX205 in the zebrafish model has already
been evaluated in vivo, although no data on the interaction site of this molecule with
C5aR1 of zebrafish are available. Indeed, PMX205 was able to reduce the expression and
activation of C5aR1 after the induction of cardiac lesions in zebrafish, in a model for cardiac
regeneration [81]. PMX205 also reduced the migration of osteoblasts in in vivo lesions in
the zebrafish model [82].

The validation of virtual screening in silico, using molecular docking and the trans-
position of the results from this interaction to in vitro and in vivo studies, has become
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established in the scientific literature. There is much evidence to suggest that biophysical
mechanisms in virtual environments are, in fact, replicated in biological systems [83–85].
The in silico interaction between the nuclear hormone receptor of Caenorhabditis elegans and
thirty-three environmental chemical products obtained from the Tox21 database can be
highlighted. When transposed to an in vivo toxicity study, clear evidence was found that
the molecular interaction effect observed in the virtual environment was somewhat similar
to that of the biological model [86]. Furthermore, the transposition of in silico virtual screen-
ing of anticancer drugs using the receptors caspase-3, Bcl-2 and TRAF2 and the interaction
proteins kinase and cyclin-dependent kinase 2 (CDK2) to an in vitro trial was validated
through the in vitro anticancer activity against HCT-116 and the cell line HeLa [87]. In
addition, results from molecular docking studies were crucial for validating the interactions
of twenty phytocompounds with high binding affinity for the target receptors AChE, COX2
and MMP8, which are involved in the physiopathology of Alzheimer’s disease. When
transposed to an in vivo trial, these phytocompounds showed potent neuroprotector effects
that directed studies towards a preclinical phase with monotherapy or combined therapy
for Alzheimer’s disease [88].

In close harmony with animal welfare, bioinformatic tools enable a precise assess-
ment of the capacity of a substance for use as a drug and elucidate the possible targets
and therapeutic molecules before these are tested in vitro or in vivo [89]. Moreover, the
predictive power of the virtual screening of molecular interactions through the use of
artificial intelligence has enabled important advances towards a comprehension of patho-
logical processes, such as in relation to drugs with hepatotoxic potential [90], screening for
molecules with deleterious effects on mitochondria [91] and, especially, the discovery of
drugs and vaccines against newly emerging diseases such as the pandemic caused by the
new coronavirus [92–94], and the development of vaccines against other pathogens, such
as Moraxella catarrhalis [95], Acinetobacter baumannii [96] and lymphocytic choriomeningitis
virus [97].

In conclusion, given the robustness of bioinformatic tools, we can suggest that the
results from our study bring a new perspective to the use of zebrafish. Not only is D.
rerio a model for studying the complement system but also it enables the evaluation of
new drugs that act on the complement system pathways. The in silico test on PMX205
demonstrated a pattern of reverse engineering, such that the effectiveness of PMX205
in zebrafish was proven and revalidated through the virtual test. The test showed the
molecular interaction in greater detail and confirmed the connection between PMX205 and
C5aR1. In addition, we suggest that Cp40 has a promising effect with regard to blocking the
cleavage of C3 into C3b in the complement system of zebrafish, in the same way that this
occurs in the homologous human molecule, due to the characteristic strength of the affinity
of the peptide–protein binding. However, despite these promising results, additional tests
are still needed in order to analyze the molecular dynamics more accurately and make
correlations with biophysical tests. In this initial analysis, our aim was merely to define
the possibility of peptide–protein interaction and to demonstrate that zebrafish form a
representative biological system for therapeutic studies on disorders of the complement
system. Therefore, further in vitro and in vivo studies are necessary, with the aims of clearly
defining the transposition of the virtual effect to the biological system and defining the
interactions of Cp40 and PMX205, through molecular assays using resonance and other
biophysical methods, so as to ascertain the molecular dynamics in greater detail.

4. Materials and Methods
4.1. FASTA Sequences and Similarity Analysis on C3 and C5aR1 between H. sapiens and D. rerio

The amino acid sequences in the FASTA format of C3 and C5aR1 from D. rerio and
H. sapiens were acquired from the UniProt database (https://www.uniprot.org/), under
the identification codes Q3MU74 for D. rerio C3 and C5AR1_DANRE for D. rerio C5aR1,
and P01024 for H. sapiens C3 and C5AR1_HUMAN for H. sapiens C5aR1. The percent-
age similarity between homologous proteins of the two species was calculated using the

https://www.uniprot.org/
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EMBOSS Water platform (https://www.ebi.ac.uk or https://www.ebi.ac.uk/Tools/psa/
emboss_water/) and the alignment results generated as ALN files were entered into the
ESPript platform (http://espript.ibcp.fr). The settings were designed to detect secondary
structures, using the PDB file (PDB ID: 2QKI) of human C3 as a template for the alignment
and detection of D. rerio C3 secondary structures. Next, we evaluated and compared the
proteoforms/subcellular localization of H. sapiens and D. rerio proteins (C3 and C5aR1)
and visualized the proteoform through Protter v. 1.0 (http://wlab.ethz.ch/protter/start/)
using FASTA archives.

4.2. Preparation of D. rerio and H. sapiens C3 and C5aR1 Structures and Coordinated Files
for Docking

We used the PDB ID: 2QKI model acquired from the protein database (https://www.
rcsb.org/) to obtain the structure of the β chain of H. sapiens C3 protein. For virtual
construction of the 3D structure of the D. rerio C3 homologous protein, the FASTA file
(Q3MU74_DANRE) containing the amino acid sequences was downloaded. Subsequently,
virtual prediction of the structure in 3D form was performed on the SWISS_MODEL server
(https://swissmodel.expasy.org/) and the PDB file was processed. The model with the
highest identity with the reference molecule was acquired. Next, the C3 PDB files of the
two species were edited in PyMOL 2.5 software (https://pymol.org/2/). In the 2QKI
crystallographic model of H. sapiens, obtained from the database, the water molecules
and solvents present were edited and deleted in PyMOL, so as not to interfere with the
docking analysis. For the docking-based interaction, we edited the C3 of both species and
constructed only the β chain, known just by its six domains (MG1-6). Lastly, we inserted
the PDB files in the GalaxyWeb server (https://galaxy.seoklab.org/) to refine the structures,
based on the refinement of the loop or terminal regions through modeling.

The same procedure was performed to obtain the C5aR1 structures from D. rerio and H.
sapiens. To construct H. sapiens structures, the crystallographic model 6C1R and the FASTA
sequence with identification based on Uniprot (www.uniprot.org) with C5AR1_HUMAN
for humans and C5AR1_DANRE for D. rerio were used as the basis. After prediction and
choosing the model, PBD files were edited in PyMOL 2.5 software.

4.3. Virtual Construction of Cp40 and PMX205

Construction of the Cp40 peptide in PDB format was performed on the PEPstrMOD
server (https://webs.iiitd.edu.in/raghava/pepstrmod). For this, the Cp40 amino acid
sequence (D-Tyr-Ile-[Cys-Val-(1Me)Trp-Gln-Asp-Trp-Sar-Ala-His-Arg-Cys]-(Me)Ile) was
inserted and the server was configured to include isomerisms and methylations. Upon
completion of the configurations, the sequence was submitted to the server and the PBD
Cp40 file was generated. PMX205 (N(2)-(3-phenylpropanoyl)-L-Orn-L-Pro-3-D-Cha-L-Trp-
L-Arg) was obtained in Mol2 2D format from the ChemSpider database (http://www.
chemspider.com/), under identification number ID 5294036.

4.4. Comparative Analysis of Hydrophobic Areas, Negative and Positive Charges and
Hydrogen-Bonding Networks on the Protein Surfaces of C3 and C5aR1

Comparative analysis of the area distribution of positive and negative charges and
the hydrophobicity of the proteins was performed on the iCn3D server (www.ncbi.nlm.
nih.gov/Structure/icn3d/full.html). For this, the PDB files of the proteins chosen were
inserted into the platform. The server then presented the data in 3D format and generated a
table containing the number of residues classified according to the configuration of choice.
The area of these residues was calculated using the solvent-accessible surface area (SASA)
(Å2). For the distribution analysis on hydrogen bond networks, the ProteinTools server
(https://proteintools.uni-bayreuth.de/bonds/structure) was used.

Cavitation was performed only for C5aR1, to generate pockets and compare the
homologous structures of D. rerio and H. sapiens. Data from the PDB file were entered into
the Caver Analyst 2.0 software (https://caver.cz/) and the pocket volumes were tabulated.
The first five values, relating to the largest pockets, were compared between the species.
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This analysis was performed only for C5aR1 due to the location of the binding site, in order
to compare the volume of pockets inserted in the PMX205 binding site.

4.5. Virtual Screening Based on the Docking of Cp40 and PMX205 with D. rerio and H. sapiens C3
and C5aR1 Molecules

For analysis based on docking, two simulations were used. In the first one, the CB-
Dock2 server (https://cadd.labshare.cn/) was used to screen the main specific connections
close to the region of the C3 interaction site and, in addition, nonspecific links were mapped.
These connections were based on cavity detection. Molecular fitting was performed based
on AutoDock Vina and then a blind docking procedure was performed based on homolo-
gous models. All of these parameters were provided by the CB-Dock2 server. Subsequently,
to configure the server, the PDB files of the receiver and the ligands of both species were
inserted. Considering that the model molecule information (PDB ID: 2QKI) accurately
provides the location of the binding site of C3-compstatin, the PDB file for the analysis on
docking and homologous template fitting was added. The results from this generated ten
interactions. Then, with the results obtained from CB-Dock2, the main peptide–protein
interactions detected were determined on the surface or close to the binding site fitting,
taking the model (PDB ID: 2QKI) as the basis. The results from this first interaction made
it possible to choose the ideal model based on the location and separation of the main
receptor residues that interact with the ligand. Amino acids were then selected in the
following positions: 369:A, 420:A, 421:A, 422:A, 423:A, 450:A, 451:A, 452:A, 453:A, 455:A,
456:A, 457:A, 458:A, 459:A, 460:A, 484:A, 485:A, 486:A, 489:A, 511:A, 513:A, 515:A.

In the second simulation of the docking analysis, the β chains of C3 and Cp40 were
uploaded and the HDOCK SERVER server (http://hdock.phys.hust.edu.cn/) was con-
figured through the insertion of the positions of the amino acids mentioned above. The
simulations were restricted to the cavity where the binding site was located. The compila-
tion of these data generated ten possible models and these results were presented in 3D
and according to the values of the docking tables. Finally, the most promising model was
selected based on its location in relation to the binding site and in correlation with the
docking value. This redocking model was analyzed on the FlexPepDock server (lexpep-
dock.furmanlab.cs.huji.ac.il) and the 3D model of choice was defined through comparison
with the peptide–protein interaction model (PDB ID: 2QKI).

For the interaction of PMX205 with C5aR1 in both species, the same pathways as for
the C3–Cp40 interaction were used. Screening was performed using CB-Dock2 to detect
possible specific and non-specific binding, based on cavitation, blind docking and pairing
in the well-resolved model (6C1R). The sequence of the amino acid residues of the receptors
located in the regions was the following: 71:A, 84:A, 85:A, 87:A, 88:A, 142:A, 146:A, 149:A,
159:A, 160:A, 161:A, 162:A, 167:A, 170:A, 171:A, 174:A, 175:A, 177:A, 178:A, 229:A, 230:A,
231:A, 233:A, 234:A, 236:A, 237:A, 239:A, 241:A, 246:A, 250:A, 253:A, 254:A, 257:A. This was
entered in the HDOCK SERVER configuration and new docking was simulated.

Then, after determining the best interaction for both the C3-Cp40 and the C5aR1–
PMX205 complex, the PBD data were edited in PyMOL 2.5 software (https://pymol.org/2/)
and were shown in detail, separately from the screening docking.
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