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SUMMARY
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vac-
cinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody
responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/
TV003). Anti-inflammatory pathways, including TGF-b signaling expressed by CD68low monocytes, and the
metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly
neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and
cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates
with broad DENV-specific antibody responses. Induction of TGF-b and IFNs is done respectively by PC/
PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced
TGF-b is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-in-
flammatory state of innate immune cells drives broad and protective B cell response to a live attenuated
dengue vaccine.
INTRODUCTION

Dengue infection is a mosquito-transmitted viral disease caused

by one of the four serotypes of dengue viruses (DENV-1, -2, -3,

and -4). Thisdisease isendemic inmore than100countries,mainly

in tropical and subtropical regions, with the highest incidence of

infection in southeast Asia and South and Central America.1 Clin-

ical manifestations of dengue infection range from an asymptom-

atic or mild disease to severe dengue, a life-threatening vascular
Cell Reports 43, 114370,
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leakage syndrome associated with cytokine storm2 and multior-

gan failure.3While eachDENV serotype can cause severe disease

after primary infection, a secondary infection with a heterologous

DENV serotype has been associated with an increased risk of

severe dengue. This epidemiological pattern has been linked to

antibody (Ab)-dependent enhancement (ADE) of infection4,5; in

ADE, cross-reactive, poorly neutralizingAbs from the first infection

facilitate the secondary infection by increasing the uptakeofDENV

virions in myeloid cells via interactions with Fc-g receptors.6,7
July 23, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. PBMC transcriptomic analysis of pre-vaccination of Butantan-DV/TV-003 vaccine-induced breadth of the neutralizing response

reveals a dichotomic association of pro- versus anti-inflammatory pathways

(A) Design of phase II Butantan-DV/TV-003 clinical trial in naive subjects, with one primary injection at day 0 and a second dose at day 180. PBMCswere collected

at days 0, 6, and 15, and plasma was collected at day 0.

(legend continued on next page)
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The first authorized vaccine against DENV, the live attenuated

Dengvaxia (CYD-TDV), was approved in dengue-endemic coun-

tries throughout Asia and Central/South America in 2016, with an

efficacy that differed by serotype and by age group.8 The largest

benefits were found in children with a positive pre-vaccination

serostatus, whereas vaccinated seronegative children (<9 years

of age) were later shown to have an increased likelihood of hos-

pitalization.9,10 This result has been suggested to be caused by

ADE in a manner similar to secondary DENV infection.11,12 This

has led the field to define a protective vaccine-induced immune

response by seropositivity to all four serotypes.11 Several other

vaccine platforms (chimeric live attenuated viruses, inactivated

plus AS04 adjuvant, DNA vaccine plus VAXFECTIN adjuvant,

and recombinant proteins) are currently in human clinical trials,

including TAK-003 (chimeric live attenuated virus); this vaccine

triggered tetravalent neutralizing Ab (nAb) and cellular immune

responses.13–15 The TAK-003 vaccine showed a 3-year efficacy

of 54.3% against DENV infection and 77.1% against hospitaliza-

tion in pre-vaccination seronegative participants.16 The contri-

bution of innate immunity and the host environment to the het-

erogeneity observed in vaccine-mediated protection has not

been addressed in these DENV vaccine trials.

The heterogeneity of the magnitude and durability of the

immune responses of human subjects to several vaccines is

well established.17–20 Age, sex, genetics, and a complex interplay

between themicrobiome, cellmetabolismproducts, immune sub-

set frequency, and circulating levels of chemokines and cytokines

at both pre-vaccination and early post-vaccination time points all

contribute to this heterogeneity.18,21–23 Unbiased and computa-

tional analyses of large "OMICs" datasets, including transcriptom-

ics, proteomics, and metabolomics, have enabled the assess-

ment of the contributions of these factors and the identification

of correlates of immunogenicity and protection. Transcriptional

profiles early post-immunization that predicted the Ab response

to the live attenuated yellow fever vaccine YF-17D,24,25 influenza

vaccine,26 hepatitis B (HepB) vaccine,17 and HIV vaccine27 were

identified using such approaches.28,29 These studies showed

the coordinated induction of a strong pro-inflammatory response

that included genes of the interferon (IFN) and IL-1 signaling path-

ways. An early post-vaccination transcriptome signature for DENV

was identified following TAK-003 vaccination, including a positive

contribution of IFN pathways, B cell cycle, and dendritic cell (DC)

antigen-presentation modules.30 Moreover, pre-vaccination tran-

scriptional signatures for influenza, HepB, malaria, and yellow fe-

ver vaccination17,19,31,32 also have been identified. These profiles

have shown a consistent association of pre-vaccination inflam-

mation (IFNs and NF-kB) with variation in vaccine response.

Nonetheless, the mechanisms and upstream regulators of these

pre-vaccination signatures remain undefined.
(B) UpSet plot of differentially expressed genes (DEGs; p < 0.05) at the pre-vacc

resents an outcome, with the number of DEGs at the far right. Genes positively

respectively. Bar plots above indicate the number of DEGs in common across se

intersection.

(C and D) Heatmaps representing pathway EnrichmentMap analysis for immune

pathwaymodule and columns represent individual participants. Column annotatio

24 biological replicates for low and high breadth, respectively.

(E) Cartoon depicting the association of breadth correlates for low (left) and high
Given the increased rate of infection observed in seronegative

individuals immunized with Dengvaxia, we leveraged multi-

OMICs data from a phase II clinical trial (ClinicalTrials.gov,

NCT01696422) testing the immunogenicity of the live attenuated

tetravalent Butantan-DV/TV003 vaccine in Brazil33–35 to identify

correlates andmechanisms that promote a broad nAb response,

the surrogatemarker of vaccine-mediated protection. Integration

of transcriptomics, metabolomics, proteomics, flow cytometry,

andvalidation in humanprimarymonocytes identified thebalance

between pro- and anti-inflammatory transcriptional and meta-

bolic signatures inmonocytesasacorrelateandamechanismup-

stream of a broad nAb response in seronegative participants.

RESULTS

Breadth of DENV-specific Ab responses is a feature of
vaccine responses triggered by the Butantan-DV/TV003
vaccine
We used samples from the phase II clinical trial, registered at

ClinicalTrials.gov (NCT01696422) (Figure 1A), to define correlates

of broad nAb responses to all four DENV serotypes. A total of 35

seronegative individuals were immunized, with a second dose

administered 180 days after the first dose. Participant demo-

graphics are outlined in Table 1. The Butantan-DV/TV003 vaccine

induced a potent multivalent nAb response (>2 serotypes) in most

individuals (n = 30) as determined by plaque reduction neutraliza-

tion tests (PRNTs), and this response was detectable in the

plasma of vaccine recipients for at least 90 days after immuniza-

tion (Figure S1A; Table S1). The Ab response was induced princi-

pally after primary immunization, as boosting did not increase nAb

titers nor the breadth of the Ab response to all four serotypes. The

kinetics and magnitude of the primary response varied across se-

rotypes and participants (Table S1). The capacity to neutralize

(titer >10) DENV1, DENV2, and DENV4 serotypes was detected

in 84.9%–87.9% of participants at day 91 and 53.6%–85.8% of

participants at day 180. Of note, the nAb response to DENV3

was less durable than that to the other three serotypes, with an

average of 111 days of seropositive nAb response (versus 153,

133, and 149 for DENV1, DENV2, and DENV4, respectively),

with significant differences compared to the DENV1 and DENV4

responses (Tables S2 and S3). We identified three non-re-

sponders (8.5%); the plasma of these subjects could not

neutralize any of the four serotypes in PRNTs at any time point

before day 90. The peak response, defined as the time point

showing the highest Ab titers against DENV1 and DENV3

(48.4% and 54.8%, respectively), occurred at day 28 for close

to half of the participants, whereas for others it occurred between

days 56 and 91 (Table S4). In contrast, peak neutralizing titers for

DENV2 andDENV4were delayed, with the highest titers observed
ination time point associated with post-vaccination outcomes. Each row rep-

and negatively associated with each outcome are indicated in red and blue,

lected outcomes. Degrees indicate the number of outcomes included in each

(C) and metabolic (D) transcriptomic gene sets, where each row represents a

n tracks (top) represent the breadth per participant. The dataset contains 8 and

(right) breadth.
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Table 1. Demographics of phase II Butantan-DV/TV003 vaccine-

seronegative participants

DENV-naive participant groups

Placebo (n = 11) Vaccine (n = 35)

Sex

Women 8 (73%) 24 (69%)

Men 3 (27%) 11 (31%)

Age (years) 37.8 (9.58) 41.6 (11.78)

Weight (kg) 76.1 (25) 73.7 (22)

Height (m) 1.6 (0.05) 1.7 (0.13)

Race/ethnicity

White 5 (45%) 21 (60%)

Black 1 (9%) 2 (6%)

Pardo 3 (27%) 8 (23%)

Asian 1 (9%) 1 (3%)

Other 1 (9%) 3 (9%)

YF-17D vaccination status

Unvaccinated 6 (55%) 14 (40%)

Vaccinated 4 (36%) 13 (37%)

Unknown 1 (9%) 8 (23%)

Data represent mean (SD) for age, weight, and height, and n (%) for the

rest of demographic variables. nAb responses to the DENV serotypes

were validated in each group, and results showwith PRNT values ranging

between 10 and 5,120.
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at day 56 (45.2% and 48.4%, respectively). The kinetics of the

neutralizing response to each serotype was variable, as for most

vaccinees individual serotype responses did not peak at the

same time point (Tables S4 and S5).

The heterogeneity in the kinetics of the serotype-specific nAb

titers prompted us to use the log10-transformed area under the

curve (AUC) values to assess the magnitude of the Ab response

per participant between days 0 and 90. Breadth was defined as

a detectable nAb response (titer >10) to all four DENV serotypes

irrespective of the time point post-immunization. These criteria

identified two groups of vaccine recipients where high breadth,

a prerequisite of a protective immune response to the vaccine in

seronegative vaccinees, was defined by a detectable nAb

response to all four serotypes and low breadth (i.e., non-protec-

tive response) by DENV-specific Ab responses to three or fewer

serotypes.11,36 We detected no significant association between

clinical features (Table 1) such as age, sex, body-mass index

(BMI), and race or prior YFV-17D vaccination status and breadth.

Figure S1B shows the distribution of participants in regard to their

response to individual serotypes: rows represent conditions for

which the number of participants are met (bar plot; top), colored

by number of degrees of intersections. Most participants (26 of

35, 74.3%) mounted the protective high-breadth (four degrees

across all serotypes, in red) response at day 90 (Figure S1B),

with the remaining (9 of 35, 25.7%) defined as low-breadth partic-

ipants. The latter all mounted a detectable nAb response against

DENV1 (with the exception of the aforementionednon-responders

to all four serotypes), suggesting that this serotype was the most

immunogenic for inducing nAb responses. In contrast, DENV3 re-

sponses were lacking in low-breadth individuals, where seven of
4 Cell Reports 43, 114370, July 23, 2024
nine participants (including the three non-responders to all four

serotypes) did not achieve detectable DENV3-specific nAb titers.

These results suggest that the DENV3 serotype is a driver of

breadth response following immunization.

Type I IFN and TGF-b signaling dichotomy as drivers of
breadth of the nAb response to Butantan-DV/TV003
Transcriptomic profiling of peripheral blood mononuclear cells

(PBMCs) collected pre-vaccination from all donors identified

genes associated with an optimal response to the vaccine (Fig-

ure 1A). Unsupervised principal-variance-component analysis

(PVCA) revealed a weak association (0.43%) with breadth. Bio-

logical sex and race were the largest drivers of the pre-vaccina-

tion variance across samples with respectively 22.04% and

11.85%. These features did not contribute to the differences

observed in breadth (0.3% and 0%, respectively) (Figure S2A).

Unsupervised principal-component analysis (PCA) confirmed

these findings (Figure S2B). A supervised analysis (DESeq2)

enabled us to identify 530 and 609 genes, respectively, that

were associated before vaccination with the high and low

breadth of the nAb response (nominal p < 0.05) (Figure S2C).

The number of differentially expressed genes (DEGs) associ-

ated with nAb AUC varied across serotypes (Figure 1B, right

margin), with 1,471 DEGs (661 up, 810 down) for DENV1,

1,434 DEGs (816 up, 618 down) for DENV2, 2,427 DEGs (1,265

up, 1,162 down) for DENV3, and 1,155 DEGs (527 up, 628

down) for DENV4. DEG similarity across breadth and serotype-

specific AUC outcomes was characterized using number of in-

tersecting DEGs (Figure 1B, top) between 2 and 4 outcomes,

where colors represent the number of outcomes intersected.

This analysis showed that DENV3 had the highest overlap with

high-breadth DEGs (n = 465); in contrast, DENV1 showed low

overlap with high-breadth DEGs (n = 94) (Figure 1B). This reflects

our observations about the large differences in magnitude of the

nAb response to DENV3 between high- and low-breadth partic-

ipants and suggests that factors that determine breadth are also

involved, at least in part, in regulating the DENV3 nAb response.

Pre-ranked gene set enrichment analysis (GSEA) revealed sig-

nificant associations of the breadth of Ab responses to DENV se-

rotypeswith several biological pathways as quantified by normal-

ized enrichment score (NES). We identified a total of 3,489 gene

sets associated at a nominal p < 0.05 (2,849 associated with

high breadth and 625 with low breadth) or 1,039 at an adjusted

p (false discovery rate [FDR]) < 0.05 (799 high; 240 low).

EnrichmentMapwas used to generatemodules based on similar-

ity (Jaccard similarity index cutoff of 0.25) between significant

gene sets (p < 0.05). We identified 27 gene modules that

highlighted specific immune effector functions (Figure 1C), 10 of

whichwere associated with high breadth, whereas 17were asso-

ciated with low breadth. This analysis revealed a positive associ-

ation (p values ranging from 0.008 to 0.0002) of transcription fac-

tor (TF) downstreamsignatures, includingSMAD2/3/4 andETS-1;

these TFs control the expression of CXCR4, CCR4, IL7R, IL6R,

and RUNX1 genes and are associated with high breadth of

DENV-specific responses. In contrast, expression of pro-inflam-

matory genes, including TNFA and RELA (p < 0.01–0.00183),

wasnegatively associatedwith breadth ofDENV-specific neutral-

ization. The strongest association with low breadth included two
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(legend on next page)
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modules of genes regulated by type I IFNs (<0.00018), including

those with established antiviral functions (IFIH1, DDX58, IRF1,

IFIT1, IFIT2, and IRF7) and tonic IFN signaling (STAT1, USP18,

and PARP9) (Figure S3A).37–40 IFN gene signatures, especially

those with ascribed antiviral functions and including DDX58,

which encodes the cytoplasmic viral RNA (including for Flavivi-

ruses) sensor RIG-I,41–43 were negatively associated with the

DENV3-specific nAb response; in contrast, DENV1-specific re-

sponseswerenot impactedby theexpressionof thesegenes (Fig-

ure S3B). DENV2-specific responses were also associated with

the expression of these interferon-stimulated genes (ISGs) in

terms of number of significant genes, albeit to a lesser degree of

significance than DENV3. Thus, variations in sensing of viral

RNAs across participants could affect the breadth of the nAb

response. Genes encoding pro-inflammatory cytokines identified

in the pathway analysis (Figure S2D) were negatively associated

with breadth at a univariate level; they included IFNG and mem-

bers of the IL-1 family (IL1B and IL1A) or cytokines induced by

IL-1 signaling (IL6). We also identified several chemokines en-

riched in the low-breadth group (e.g., CCL3, CCL4, CXCL1, and

CXCL3) and one in the high-breadth group (CCL2), which is

consistent with the chemotaxis module being negatively associ-

ated with breadth (Figure 1C).

We used the TGFB signaling and type I IFN signatures,

including subsignatures of the tonic and antiviral IFNs,39 to

validate our findings in other live attenuated pre-vaccination da-

tasets from the Human Immunology Project Consortium

(HIPC).44 We performed differential expression analysis between

high and low responders for the magnitude of the Ab response in

parallel for each trial and leveraged the results for GSEA using

our signatures (Figure S3C). Enrichment of type I IFNs, along

with antiviral ISGs and tonic IFN signaling, was associated signif-

icantly in low responders from two of three vaccine trials with

another live attenuated flavivirus vaccine, YFV-17D. The third

YFV study (SDY1264) exhibited an enrichment for IFNs in the

high responders, which reflected the pre-vaccination profile

observed for another live attenuated vaccine, namely varicella

zoster.45 Of note SMAD2/3/4 modules (Figure S3C) were en-

riched in three of four YFV-17D vaccine trials, corroborating

our observations in the Butantan-DV/TV003 DENV vaccine trial.

Pre-vaccination metabolic activity as a driver of the
breadth of DENV-specific Ab responses to Butantan-DV/
TV003
Intracellular metabolic pathways (i.e., oxidative phosphorylation,

fatty acid oxidation, and glycolysis) and metabolites derived from
Figure 2. Pre-vaccination profiling of plasma metabolites reveals that

(A) Metabolite set enrichment analysis (MSEA) was performed on pre-ranked m

analysis with a Jaccard index >0.5 for modules displaying a nominal p < 0.05.

metric for the association with breadth, where red and blue respectively denote

(B) Heatmap representing the core metabolites from modules in (A), where each

dividual participants. Row annotation tracks (left) represent the signed log p value

high negative and positive significance, respectively. Column annotation tracks (to

replicates for low and high breadth, respectively.

(C) Integrated correlation network analysis of transcriptomics andmetabolomics,

two features they link. Spearman correlation (p < 0.05) was used as an integration

map to the respective feature type and association with neutralization breadth.

(D) Cartoon depicting the association of breadth correlates for low (left) and high
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the microbiome that translocate to systemic circulation (bile acids

[BAs] and short-chain fatty acids) have been shown to regulate

innate and adaptive immune responses following vaccination.46,47

Given these data, we investigated whether pre-vaccination tran-

scriptomic signatures of cell metabolism also could predict

breadth of vaccine responses (Figure 1D). We identified several

metabolic pathways that were positively associated with high

breadth, including pathwaysofmitochondrial function (NADmeta-

bolism, oxidative stress, glycolysis, amino acid metabolism, and

lipid metabolism; p values ranging from 0.0006 to 0.00033).

Systemic metabolites have been shown to trigger differentia-

tion of effector cells of the innate and adaptive immune re-

sponses.46,48,49 We analyzed a broad panel of 868 pre-vaccina-

tion plasma metabolites and correlated these data with breadth

of the nAb response (Figure S4A). We identified 22 differentially

expressed metabolites (nominal p <0.05) across breadth groups

including many different classes of metabolites, six of which be-

longed to the phosphatidylcholine (PC)/phosphatidylethanol-

amine (PE) class.

We performed pathway analysis using metabolite set enrich-

ment analysis (MSEA) on the Small Molecular Pathway

DataBase (SMPDB) and Metabolon metabolite sets followed

by EnrichmentMap to identify consolidated metabolic modules

from overlapping metabolite sets with high degrees of redun-

dancy in metabolite composition (Jaccard distance <0.5).

Figures 2A and 2B show the statistically significant metabolic

modules and their associated overrepresented core metabo-

lites (i.e., enriched in multiple pathways in a given module).

PC/PE metabolism positively correlated with the breadth of

nAb response (p = 0.00037) (Figures 2A and 2B), confirming

our observations from the univariate analysis (Figure S4A).

We highlighted the strongest drivers of module enrichment

from the core metabolites of correlates in Figure 2A; PC/PE

metabolism includes 14 metabolites. Other modules that

correlated positively with the breadth of the vaccine response

included benzoate and sphingomyelin metabolism (p = 0.005

and p = 0.013). Sphingomyelins are a degradation by-product

of PCs50 and trigger TGF-b activation in regulatory T cells

(Tregs), which impacts their function. In contrast, we observed

a significant association of the primary BA cholate (CA) and

glycocholate (GCA) as negative correlates of the breadth of

the Ab response (p = 0.00049). The identification of these me-

tabolites confirms the importance of systemic/circulating me-

tabolites, which were also confirmed by the enrichment of

metabolic pathways in pre-vaccination transcriptional profiles

(Figure 1D).
metabolic pathway activity is associated with inflammatory status

etabolites from differential expression analysis, followed by EnrichmentMap

Bar plot represents individual modules, with the signed �log10(p value) as a

an association with high and low breadth.

row represents normalized metabolite expression and columns represent in-

of the association of each outcome for eachmodule, with blue and red denoting

p) represent the outcome per subject. The dataset contains 8 and 23 biological

where nodes denote features and edges the correlation coefficient between the

metric across OMICs and displayed on the edge color. Node shape and color

(right) breadth.
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A correlation analysis between transcriptomic and metabolic

sets confirmed the association between metabolic pathways

across RNA sequencing (RNA-seq) and metabolomics data for

the leading positive and negative metabolic pathways that could

drive inflammation (Figure 2). This analysis highlighted the inter-

play between specific metabolic pathways and inflammatory ac-

tivity, where BA metabolism modules were positively correlated

to nine pro-inflammatory transcriptional profiling modules,

including type I IFN, TNF-a signaling, IL-1R signaling, and NF-

kB signaling, and PC/PE metabolism was negatively associated

with these pro-inflammatory pathways. Instead, PC/PE was

correlated to five positive transcriptomic determinants of breadth

of neutralization, three of which are involved in TGF-b signaling

(SMAD1, SMAD2/3, and SMAD4). Given that PC/PE and BA

pathways displayed the strongest association with breadth and

transcriptomic inflammatory pathways (at the pathway and ana-

lyte levels), they were prioritized for further analyses. These ob-

servations also highlight the extent of immunological and meta-

bolic pathway crosstalk associated with an optimal response to

Butantan-DV/TV003. Given the strong association with multiple

cytokine signaling pathways and chemotaxis, we searched for

cytokine/chemokine genes that correlated tometabolokine levels

(Figure S4B) and identified inflammasome-driven cytokines IL1B,

IL18, and IL-6 as associated with BA levels. In contrast, PC/PE

metabolites displayed a negative association with most genes

associated with low breadth, including chemokines CCL4,

CXCL3, and CLXCL1 and the cytokine IFNG.51

The heterogeneity of pre-vaccination monocytes is
associated with the breadth of the nAb response to
TV003
We monitored the association of innate and adaptive cell sub-

sets with the breadth of DENV-specific nAb responses using

flow cytometry. Unsupervised clustering using a combination

of PhenoGraph clustering with the t-SNE dimension reduction

approach revealed 22 distinct clusters of innate immune cells

among CD3�CD19�CD56�(Lin�) cell subsets (Figure 3A). The

frequencies of three of these clusters were significantly associ-

ated with the breadth of the nAb response: one cluster of cells

expressed a plasmacytoid dendritic cell (pDC) phenotype

(Lin�CD11c�CD123+; cluster 8, p = 0.0062), whereas the two

others included monocytes (CD14+CD16�CD11b+HLA-DR+;

clusters 1 and 16) (Figures 3B and S5C). These two monocyte

clusters were distinguished by their expression levels of the

scavenger receptor CD68. CD68high monocytes (cluster 1)

were enriched in the low-breadth group (p = 0.0028), whereas

CD68low monocytes (cluster 16) were enriched in the high-

breadth group (p = 0.0024) (Figure 3C). Flow cytometric charac-

terization of the B cell compartment highlighted additional differ-

ences between high- and low-breadth responders. The B cell

panel, pre-gated on live CD19+ cells, resulted in the identification

of 27 clusters (Figures S5B andS5D), two of whichwere enriched

in the high-breadth group. Cluster 8 had a naive B cell phenotype

(CD20+CD21+BCL2highIgG) (p = 0.03), whereas cluster 15 had a

germinal center (GC) B cell phenotype (CD20highCD21lowCD38in-

tIgDlow) (p = 0.008) (Figures 3D and S5B).

We thus hypothesized that monocytes were the key drivers of

the crosstalk between immunological and metabolic pathways
highlighted in Figure 3C. For this to be true, monocytes would

need to meet two prerequisites: they first would need to have

higher expression of key transcriptional signatures identified in

bulk transcriptomics that correlate tometabolite expression (Fig-

ure 2C) relative to other subsets, such as type I IFN and TGFB1

signaling. Second, they would need to express receptors/trans-

porters necessary for signaling of BAs and PC/PE metabolites.

To test this hypothesis, we leveraged CITE-seq data generated

in an influenza pre-vaccination study (n=20 subjects; Figure 4).19

We first verified the expression of these genes across different

cell identities. Cell identities were inferred from reference-based

annotation (SingleR with a Monaco reference52,53) and then vali-

dated with surface marker expression (Figures 4A and S6). We

then validated that myeloid cells, particularly monocytes, ex-

hibited higher expression of CD68 (Figure 4B). Furthermore,

myeloid cells displayed higher expression of TGR5 (Takeda

G-protein-coupled receptor 5 protein, encoded by GPBAR1)

and the vitamin D receptor VDR and nuclear receptor 4A1

(NR4A1), both of which serve as BA receptors.54,55

PE/PC can putatively signal through CD300A56 and TIM-1

(HAVCR1)57; alternatively, STARD758,59 and STARD10 trans-

porters60 can trigger the internalization of these metabolites to

themitochondria.CD300Awas expressed at highest levels in nat-

ural killer (NK) cells, followed bymyeloid cell phagocytes, whereas

TIM receptorwas expressed primarily in T cells. STARD7was also

enriched in myeloid phagocytes, along with B cells, whereas

STARD10 was expressed at lower levels across most immune

subsets, including monocytes (Figure 4B). Altogether, these re-

sults highlight that innate immune cells, especially monocytes

and DCs, likely can respond to both BAs and PC/PE.

We then compared averaged gene expression for genes found

in transcriptional modules in Figure 1C across cell identities of

the single-cell RNA-seq data and then generated module scores

with the GSVA Zscore method (Figure 4C). A majority of modules

were enriched in myeloid cells, but some key modules were

found enriched in other subsets, such as humoral response in

B cells. More importantly, TGF-b signaling modules such as

SMAD2/3 and SMAD4, which were a correlate of high breadth

in our data, were enriched in both monocytes and DCs. More-

over, the type I IFN module, which was a correlate of low

breadth, was enriched only inmonocytes and not in DCs. Among

those ISGs, we observed an enrichment of antiviral genes in

monocytes, such as OAS2/3, OASL, IFIT3, and TRIM25. We

also added BA metabolism gene sets in this analysis, divided

into three categories: biosynthesis, transport, and signaling.

Similar to other modules, myeloid cells expressed higher levels

of genes associated with these functions, further reinforcing

the idea that they are at the center of an immunometabolic nexus

downstream of BA and PC/PE.

Integrative analysis of Butantan-DV/TV003 OMICs
reveals monocytes as central mediators of an
inflammation-metabolism crosstalk
We used sparse least-squares regression models61 to investigate

whether the gene expression signatures associated with breadth

of the nAb response in the Butantan-DV/TV003 phase II trial corre-

lated with significant features from plasma proteins, plasma me-

tabolites, and flow cytometry (FCM) subset frequencies datasets
Cell Reports 43, 114370, July 23, 2024 7
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Figure 3. The frequency of pre-vaccination monocyte subsets distinguished by their expression of the scavenger receptor CD68 at the pre-

vaccination time point is associated with breadth of the response to Butantan-DV/TV003 in a dichotomous fashion

(A) t-SNE plot of CD3�CD19�CD56� PBMCs from unsupervised flow cytometry analysis. Different colors represent distinct clusters following Rphenograph

clustering analysis (top). The t-SNE plot was separated on the basis of breadth outcome (bottom), showing variations in density in clusters 1, 16, and 8. The

dataset contains 8 and 17 biological replicates for low and high breadth, respectively.

(B) Heatmap showing scaledmedian fluorescence cluster profile for eachmarker: each row is a significant cluster and each column is amarker in the panel. White

denotes low expression, while red denotes high expression.

(C) Boxplots showing monocyte clusters 1 (left) and 16 (right) cell frequency versus breadth.

(D) Boxplot showing pDC cluster 8 cell frequency versus breadth.

(E) Cartoon depicting the association of breadth correlates for low (left) and high (right) breadth.
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from Figures 1, 2, 3, and 4 (Figure 5). This integrative analysis

showed a distinction between pro- and anti-inflammatory path-

ways and their respective association with CD68high and

CD68low monocytes. CD68low monocytes had an enhanced

anti-inflammatory TGF-b signaling bias, whereas CD68high mono-

cytes were associated with a pro-inflammatory phenotype. pDC

frequencies also were positively associated with SMAD4 and

not correlated to pro-inflammatory signaling. Furthermore, as
8 Cell Reports 43, 114370, July 23, 2024
shown in Figure 2C, PC/PE metabolites correlated positively

with SMAD4 signaling and negatively with pro-inflammatorymod-

ules, including type I IFN, IL-1R, and TNFA signaling. Conversely,

BAs showed a positive association with pro-inflammatory

modules and a negative association with a SMAD4 response.

Altogether, this integrative analysis provides mechanistic expla-

nations for vaccine immunogenicity, whereby metabolites,

including BAs and PC/PE, could serve as upstream regulators



Figure 4. Single-cell transcriptomics analysis on influenza pre-vaccination dataset highlights monocytes as key drivers of immune meta-

bolic crosstalk

(A) UMAP plot of influenza pre-vaccination PBMC CITE-seq from 20 healthy donors. Colors represent cell identity.

(B) Heatmap of single-cell gene expression values for CD68, bile acid receptors, and PC/PE transporters. Yellow and purple denote a higher or lower expression

per gene, respectively.

(C) Pathway activity from each dengue transcriptional module per cell identity from averaged gene expression. Each row represents normalized expression per

module, while columns represent cell identities. Red denotes higher relative expression, while blue represents lower expression.
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to differentially polarize monocyte functions by modulating cyto-

kines such as TGF-b, IL-1b, TNF-a, and type I IFNs.

Metabolite stimulation ex vivo shows the contrasting
immunomodulatory functions of BA and PC/PE on
primary human monocytes
To confirm the immunomodulatory function of these metabo-

lites, we isolated and purified CD14+CD16� monocytes using

negative selection and magnetic beads from fresh healthy donor

PBMCs (n = 3–6; varies across experiments). Given the associa-

tion of BA with pro-inflammatory pathways, we exposed mono-
cytes to primary (GCA) or secondary (lithocholate [LCA]) BAs for

6 to 18 h and measured the production of pro-inflammatory cy-

tokines, including IFN-b, IFN-g, IL-6, IL-1b, IL-8, and IL-18, in

culture supernatants using the Mesoscale Discovery platform.

Given the documented association of BAs with inflammasomes

combined with the association to IL-1 family cytokine expres-

sion, we designed a BA stimulation experiment aimed at quanti-

fying inflammasome activation. Thus, all conditions were first

primed with lipopolysaccharide (LPS), including the DMSO

vehicle, and then exposed to BA. Nigericin was used as a posi-

tive control. Viability assays were performed to establish an
Cell Reports 43, 114370, July 23, 2024 9



Figure 5. Integrative analysis between transcriptomics, plasma proteomics, and metabolomics and flow cytometry highlights a dichoto-

mous crosstalk of monocyte subsets with metabolic and pro- and anti-inflammatory pathways

Circos plot representation of cross-platform correlation analysis, where nodes denote features and edges the correlation coefficient between the two features

they link.
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optimal non-toxic dose of BA (Figure S7B). The selected non-

toxic concentrations also induced optimal levels of pCREB1

and caspase-1 activation (Figure S7C). We used the time point

at which peak responses to each BA were observed among do-

nors. We noted a significant induction (2- to 5.6-fold) of IFN-b

(and to a lesser extent IFN-g by GCA) after exposure to primary

or secondary BAs (Figure 6A) compared to the DMSO control.

We also observed a significant increase in FLICA+ (a fluorescent

marker for caspase-1 activation) monocytes 30 min after GCA

(p = 0.029) or LCA (p = 0.123) exposure (Figures S7C and

S7D). Activation of caspase-1 and production of IL-18, but not

IL-1b, were induced by LCA (p = 0.0577), but not by GCA.

Together, these data support a pro-inflammatory role for BAs

in primary human monocytes.

Monocytes were cultured in serum-free medium and stimu-

lated with PC/PE for 12 and 20 h, followed by measurement of

TGF-b1 production. Both PC and PE induced a 100- to 1,000-

fold increase in TGF-b1 production compared to controls (Fig-

ure 6C). This TGF-b1 increase after PE exposure was associated

with a reduction in the expression of the latent activated peptide

(LAP) on the surface of CD68high monocytes (p = 0.028; Fig-

ure S7E). Higher levels of TGF-b1 triggered SMAD2/3 phosphor-

ylation in CD68high but not in CD68low monocytes (Figure 6B).
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Given the differences in levels of pSMAD and LAP expression be-

tween CD68high and CD68low monocytes, we characterized the

baseline phenotype of unstimulated cells (Figure S7F): CD68high

monocytes showed higher expression of GARP, a receptor for

TGF-b that regulates its activation in Tregs,62,63 and a marked

reduction in expression of LAP compared toCD68lowmonocytes.

This distinction suggests a differential capacity for TGF-b activa-

tion at pre-vaccination by the two monocyte subsets. Exposure

of monocytes to PC and PE led to a significant downregulation

of CD68 as judged by the ratio of CD68high:CD68low cell fre-

quencies (Figure 6D); this shift in ratio upon ex vivo exposure to

PC/PE correlates with the differences observed in the pre-vacci-

nation cohort between high- and low-breadth responders for

clusters 1 and 16 (Figure 3C).

Finally, we developed an ex vivo model to confirm that TGF-b

production triggered by PC/PE would counterbalance the pro-

inflammatory IFN response induced by viral pathogen-associ-

ated molecular patterns (PAMPs) present in the live attenuated

Butantan-DV/TV003 vaccine.64 We conditioned primary mono-

cytes with PC/PE (12 and 20 h), followed by treatment with the

TLR7/8 agonist R848 for 24 h as a surrogate for DENV infection

(Figure 6E).65 Four cytokines and chemokines (CX3CL1, IFN-

a2a, IL-10, and IL-1b) induced by R848 and repressed by



(legend on next page)
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exogenous TGF-b were also repressed by PC, PE, or both PC

and PE treatment at 12 and/or 20 h (p < 0.05). CX3CL1 expres-

sion was preferentially inhibited by PC at both time points. More-

over, IFN-a2a and IL-1b, both triggered by BAs, were inhibited

by PC at the 20 h time point. Of note, PC and PE treatment

dampens IL-10 production, which is known to promote GC reac-

tions.66,67 Taken together, the results of our integrative analysis

and experimental validation highlight the crosstalk and interplay

between pro- and anti-inflammatory signatures driven by meta-

bolic reprogramming and their impacts on the breadth of Ab re-

sponses in the context of immunization with a replicating viral

vaccine.

DISCUSSION

In this study, we leveraged an in-depth multi-OMICs analysis of

DENV vaccination to provide a mechanistic framework that un-

derlies the impact of the cell-intrinsic and systemic metabolome

on immunogenicity in subjects prior to immunization with a live

attenuated DENV vaccine. This phase II trial included 35 sero-

negative participants. These individuals were vaccinated with

the Butantan-DV/TV003 vaccine in Brazil. We showed that the

response to this tetravalent vaccine was heterogeneous at mul-

tiple levels, including the breadth, the magnitude, and the ki-

netics of the response. This heterogeneity prompted an investi-

gation into host signatures prior to vaccination that could have

an impact on the breadth of the nAb response to the four

DENV serotypes present in the vaccine; the emphasis on the

breadth of the response is critical in preventing ADE.33 We iden-

tified a network of BA and PC/PE metabolites that respectively

trigger the activation of pro- and anti-inflammatory signaling cas-

cades in monocytes and modulate the breadth of the humoral

immune response to DENV. These findings were validated by

stimulating primary monocytes with metabolites that were asso-

ciated with the breadth of the response to the Butantan-DV/

TV003 vaccine.

Associations of the anti-inflammatory properties of PC/PE

have been reported, as they trigger the downregulation of

TNF-a signaling68 and autophagy, although the association of

PC/PE is unheard of in the context of vaccination. PE defi-

ciencies have been associated with the unfolded protein

response (UPR)69 and endoplasmic reticulum stress.70,71 The

mechanisms through which PC/PE induce anti-inflammatory ef-

fects are poorly defined. Experiments with rat chondrocytes

have shown that PC/PE can activate TGF-b1.72 Our experiments

validated these findings in primary human monocytes, as we
Figure 6. BA or PC/PE metabolite exposure respectively induces a pro

(A) In vitro supernatant cytokine secretion in primary healthymonocytes following e

of LPS priming (1 mg/mL) on 6 biological replicates. Nigericin was used as a positiv

change versus vehicle DMSO.

(B) Flow cytometry induction of SMAD2/3 phosphorylation following 20 h of PC

Exogenous TGF-b1 was used as a positive control.

(C) In vitro supernatant TGF-b1 secretion following PC/PE exposure for 12 h in pr

change versus unstimulated cells per donor.

(D) Log ratio of CD68high versus CD68low monocyte frequency after PC/PE expos

(E) In vitro supernatant cytokine quantification of cytokine production in primary m

by PC/PE exposure for 12 and 20 h. The y axis represents the log fold change v

analyses.
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observed an increase in TGF-b1 concentrations in supernatants

following exogeneous PC/PE exposure and in SMAD2/3 phos-

phorylation downstream of TGF-b receptor signaling. Further-

more, we confirmed that innate immune signaling downstream

of TLR7/8 in primary human monocytes, including the produc-

tion of antiviral type I and pro-inflammatory type II IFNs,

was inhibited by TGF-b production induced by PC/PE. This

observation may be explained by SMAD4 dimerization with the

SMAD2/3 complex to inhibit transcription of AP1 and IRF-7,

thereby reducing innate sensing of viral RNA.73 Another mecha-

nism of action of PC/PE on TGF-b could be mediated by the

binding of phospholipids to CD300A or STARD7, which are

found in monocytes and other myeloid cells.56

In contrast, exogenous BA stimulation of human primary

monocytes induced the production of pro-inflammatory cyto-

kines, including IFN-b and IL-18, which were associated with

low breadth. This observation is supported by a recent study

showing that children with elevated BA demonstrated poor re-

sponses to HepB vaccination.74 In comparison, modulation of

secondary BAs as a result of gut microbiome perturbations

altered immunity to influenza vaccination with reductions in influ-

enza-specific IgG1 and IgA production that was partially medi-

ated by effects on inflammasome signaling.46 This finding con-

trasts with our data and could be explained by the distinct

nature of the vaccine (inactivated versus live attenuated). Our re-

sults suggest that BA-induced IFNs impede the response to

Butantan-DV/TV003 by limiting viral sensing by innate immune

cells. BAs have been known to play an antiviral role in other con-

texts: administration of deoxycholic acid (DCA) induces antiviral

ISG expression inmonocytes in the context of CHIKV infection.75

This BA-induced antiviral effect has been associated with

a TGR5-SRC signaling axis.76 Multiple immune subsets can

potentially respond to metabolites such as BA: receptors and

transporters necessary for downstream signaling are expressed

by monocytes, DCs, NK cells, or B cells. However, only mono-

cytes showed detectable levels of liver fatty acid binding protein

(FABP1), which has been hypothesized to promote a cytoprotec-

tant effect against toxic fatty acids such as BAs and monoacyl-

glycerols, which would otherwise promote cytotoxicity.77–79 This

implies that expression of receptors is not sufficient for down-

stream signaling and that monocytes are a likely subset to

mediate a response from BAs.

Several studies have focused on understanding the impact of

pro- and anti-inflammatory signatures as respective negative

and positive correlates of vaccine immunogenicity. Fourati

et al. demonstrated hyporesponsiveness to HepB vaccination
- or anti-inflammatory response in primary monocytes

xposure to BAs glycocholic acid (GCA) and lithocholic acid (LCA), following 4 h

e control for inflammasome-induced cytokines. The y axis represents log2 fold

or PE exposure in CD68+ primary monocytes from six biological replicates.

imary monocytes on three biological replicates. The y axis represents log fold

ure for 20 h from six biological replicates.

onocytes from five biological replicates stimulated with R848 for 24 h, followed

ersus the DMSO vehicle per donor. Parametric paired t test was used for all
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in the setting of heightened inflammation.17 Similarly, pre-vacci-

nation profiling for RTS,S/AS01 vaccination has shown a height-

ened IFN antiviral and inflammatory signature in future malaria

cases versus controls, suggesting a negative impact of IFN on

the vaccine response.32 In contrast, others have shown a posi-

tive association of pre-vaccination IFN responses with tetrava-

lent influenza vaccination,19 a study for which CD68 expression

was a positive correlate of outcome. Similarly, work by the HIPC

has shown a pan-vaccine NF-kB- and IRF-7-driven signature as

a positive correlate of the magnitude of the Ab response.44 Net-

works of genes regulated by these two TFs highlight a pre-vacci-

nation signature that could predict the magnitude of the

response to 13 different vaccine platforms. This pan-vaccine

signature highlights the negative impact of IRF-7 and IFN-regu-

lated genes on the response to live attenuated viruses; thus, in-

dividuals with higher levels of expression of antiviral genes prior

to vaccination may abort more rapidly replication of a live atten-

uated viral vaccine, effectively reducing antigen load and the

generation of a potent humoral response; this also is seen by

our observation of enrichment of pre-vaccination IFN in low re-

sponders to the YFV-17D vaccine. This hypothesis is supported

by recent data with another live attenuated DENV vaccine

(TAK-003), where the high responders had detectable viremia,

whereas low responders did not. Our results show that pre-

vaccination antiviral functions, which are modulated by systemic

metabolites, influence viral replication of live attenuated viral

vaccines and the subsequent Ab response to these vaccines.

Monocytes have been identified as positive or negative cor-

relates of the vaccine response to HepB, malaria, HIV, and YFV

vaccination.17,24,26,31,32 Monocytes include several functional

subsets, with markers such as CD9, Slan, CD36, CCR2,

CD93, LAIR2, or VCAN,80,81 identifying new subsets of these

cells. Herein, we identified CD68, a macrophage marker, as

associated with this functional heterogeneity.82 CD68 is

involved in the binding of oxLDL, phosphatidylserine, and

apoptotic cells,83 and its expression on monocytes could

mediate the response to the Butantan-DV/TV003 vaccine by

facilitating the uptake of infected apoptotic cells. Alternatively,

it could be a surrogate marker of an IFN signature in monocytes

that is associated with vaccine outcome to Butantan-DV/TV003

and influenza vaccines, as highlighted by its association with

ISG expression and documented status as a target gene of

STAT1/2/3.

pDCs were positively associated with the breadth of the nAb

response, although this association was not linked to their ca-

pacity to produce IFNs.84 We did observe a positive association

of pDCs with PC/PE and SMAD4 signaling, which raises the pos-

sibility that production of type I IFNs by pDCs might be inhibited

by TGF-b produced in response to PC/PE. pDCs are known to

exert regulatory functions, such as the production of IDO and

TGF-b.85 In parallel, we observed a positive association of naive

B cells and GC B cells with the breadth of nAb responses. A

larger pool of uncommitted B cells and a niche favorable to GC

survival and proliferation might favor induction of a broader

nAb response.

We have generated a mechanistic model of the pre-vaccina-

tion immune state required for a broad and protective DENV vac-

cine response that would minimize the potential for ADE. We
posit that a balance between pro- and anti-inflammatory re-

sponses triggered by metabolites present in the host modulates

the capacity of a live attenuated vaccine to replicate in mono-

cytes, a key cell that supports DENV spread and antigen presen-

tation.86,87 Allowing the attenuated virus to replicate by damp-

ening the initial immune response may be beneficial. This

could potentially distinguish pre-vaccination signatures for live

attenuated vaccines from other vaccine strategies that do not

depend on viral replication. The interplay between PC/PE, BA

metabolites, and inflammatory pathways before vaccination

paves the way for potential pre-conditioning regimens prior to

vaccination to optimize responses. Indeed, BAs are induced by

a cholesterol-rich diet,88 which hypothetically could be avoided

to reduce the pre-vaccination IFN response. In parallel, PC is

present in meat, egg, dairy, some cruciferous vegetables, and

beans, some of which could be included in a pre-vaccination

regimen.89 This concept is supported by evidence of the anti-in-

flammatory impact of oral PC supplementation in ulcerative co-

litis.90 In summary, we believe our study offers mechanistic in-

sights into the response to live attenuated vaccines and

provides a case for establishing the role of metabolites in modu-

lating anti- and pro-inflammatory responses.

Limitations of the study
This study was performed on human participants of both sexes

and across multiple race/ethnicities. We have investigated the

impact of these factors on vaccine outcome, inflammatory re-

sponses, and metabolic signatures and found no association.

However, it is possible that we do not have the sample size to

detect modest effects and thus cannot fully exclude their poten-

tial involvement. Furthermore, statistical studies using large

OMICs (transcriptomics, metabolomics) in healthy subjects at

the pre-vaccination time point, including ours, use nominal

p values instead of adjusted p values, because of the presence

of modest univariate effects. We compensate for this issue by

leveraging pathway analysis (e.g., GSEA) instead of univariate

findings, which are more robust to this issue.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Rafick-

Pierre Sékaly (janedoe@emory.edu).

Materials availability
This study did not generate new unique reagents

Data and code availability
d De-identified human bulk RNA Sequencing data (raw and normalized counts) have been deposited at GEO. They are publicly

available as of the date of publication. Accession numbers are listed in the key resources table. This paper analyzes existing,

publicly available data. These accession numbers for the datasets are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants
Thirty-five volunteers from the Phase 2 trial in Brazil were used in this study, based on their pre-vaccination seronegative status to all 4

DENV serotypes as measured by PRNT assay. Participants were recruited at the University of Sao Paulo, screened for major infec-

tions prior to vaccination, and given subcutaneously 103 plaque-forming units (PFU) of each viral serotype (1-4) of live attenuated

tetravalent Butantan-DV/TV003. PBMCs and plasma were collected at Day 0, prior to vaccination, as depicted in Figure S1A nAb

response to the vaccinewasmeasured by PRNT assay at Day 28, Day 56 andDay 90. Participants were given a second immunization

at Day 180. Further details about sex, age or other demographic factors are available in Table 1. Effect of age, sex, race/ethnicity were

tested and no association was found with the vaccination outcome.

METHOD DETAILS

Flow cytometry staining
PBMCs from volunteers at day 0 were incubated with fluorochrome-conjugated antibodies for at least 15–20 min at 4�C or on ice,

protected from light. For the B cell panel the following fluorochrome-conjugated anti-human antibodies were used: CD19 (HIB19)

(Cat. Number: 302252), CD38 (HIT2) (Cat. Number: 303524), CD10 (HI10a) (Cat. Number: 312212), IgD (IA6-2) (Cat. Number:

348208), CD20 (2H7) (Cat. Number: 302304), KI-67 (KI-67) (Cat. Number: 350506), BCL-2 (Cat. Number: 658606), were all from

BioLegend. IgM (G20-127) (Cat. Number: 551079), CD21 (B-ly4) (Cat. Number: 555422), IgG (G18-145) (Cat. Number: 561298),

CD21 (B-ly4) (Cat. Number: 557327), were from BD Biosciences. LIVE/DEAD Fixable Dead Cell Stain (Life Technologies) (Cat.

Number: L34957) was used to gate on live cells. Samples were acquired on a BD LSR II.

For the innate immune cell panel: CD3 (UCHT1) (Cat. Number: 564307), HLA-DR (G46-6) (Cat. Number: 564040), CD45 (HI30) (Cat.

Number: 563716), CD163 (GHI/61) (Cat. Number: 563889), CD16 (3G8) (Cat. Number: 563692), CD14 (M5E2) (Cat. Number: 564054),

CD71 (M-A712) (Cat. Number: 562995), CD123 (9F5) (Cat. Number: 551065), CD80 (L307.4) (Cat. Number: 561134), CD11b (ICRF44)

(Cat. Number: 557918), CD68 (Y1/82A) (Cat. Number: 564944) were purchased from BD Biosciences. CD56 (HCD56) (Cat. Number:

318340), CD19 (HIB19) (Cat. Number: 302242), CCR2 (K036C2) (Cat. Number: 357204), CD206 (15-2) (Cat. Number: 321104), CD11c

(Bu15) (Cat. Number: 337216) and CD124 (G077F6) (Cat. Number: 355004) were obtained from Biolegend. CX3CR1 (2A9-1) (Cat.

Number: 17-6099-42) was obtained from eBioscience. Live/Dead Aqua (Cat. Number: L34957) was purchased from Invitrogen. Cells

were first stained after centrifugation for 30 minutes for cell surface markers in Staining Buffer (PBS 1X + 2% FBS) and a viability dye

(Live/Dead Aqua). Then, they were fixated and permeabilized with Cytofix/Cytoperm (BD Biosciences, Cat: 554714) for 20 minutes,

followed by an intracellular staining with anti-CD68 in PermWash (5X) for 30 minutes. All centrifugations were done at 0-4 C. All in-

cubations were done at ice-cold temperatures. Data was acquired on a BD Fortessa cytometer.

Metabolite stimulation
Monocyte Enrichment and culture. CD14+CD16- Classical Monocytes were isolated by negative selection from PBMCs of healthy

donors using the EasySepTM Human Monocyte Enrichment Kit (Cat# 19059, StemCell Technologies). Purity was assessed by

Flow Cytometry (BD FACSymphonyTM A5 Cell Analyzer) using a viability dye (LIVE/DEADTM Fixable Aqua Dead Cell Stain Kit,

Cat# L34957, Thermo Fisher), an anti-CD3 antibody (clone UCHT1, Cat# 563109, BD Biosciences), an anti-CD19 antibody (clone

HIB19, Cat# 302241, Biolegend), an anti-CD14 antibody (clone M5E2, Cat# 612902, BD Biosciences) and anti-CD16 antibody (clone

3G8, Cat# 302036, Biolegend). Purities of enriched populations ranged between 80-95%.
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For the assessment of production of TGF-b

500,000 CD14+CD16- monocytes per well were either stimulated with PC (1 nM) and PE (1 nM), TGF�b (25 ng/ml, positive control),

DMSO (vehicle control) or left unstimulated (negative control) for 30 min, 12 h, or 20 h in 96-well round bottom plates. PC and PE

working concentrations were determined in a viability assay by co-culturing monocytes with five concentrations of the compounds

for 24 h (Figure S7A). Supernatants were collected from these time points and frozen until time of use.

For the assessment of production of pro-inflammatory cytokines

500,000 CD14+CD16- monocytes per well were used for this assay. First, monocytes were primed with LPS (1 mg/ml) for 4 h. Cells

then were stimulated either with BA: GCA (100 nM) or LCA (50 nM), Nigericin (1 mM, positive control), DMSO (vehicle control) or left

unstimulated (negative control) for 1, 6, 12 and 18 h in 96-well round bottom plates. BA working concentrations were determined in a

viability assay by co-culturing monocytes with five concentrations of the compounds for 24 h (Figure S7B). Supernatants were

collected from these time points and frozen until time of use.

For the assessment of inhibition of cytokines production after preconditioning with PC and PE

500,000 CD14+CD16- monocytes per well were co-cultured with PC (1 nM), PE (1 nM), TGF-b (25 ng/ml, positive control), DMSO

(vehicle control) or left unstimulated (negative control) for 12 and 20 h in 96-well round bottom plates. Cells then were stimulated

with a of TLR7/8 agonist (R848, Resiquimod – Cat# tlrl-r848, InvivoGen) for 24 h. Supernatants were collected from all conditions.

Secreted cytokines in the supernatants were quantified using the Mesoscale Discovery platform/kits described below.

Cytokine assessment
U-PLEX assay (Meso Scale MULTI-ARRAY Technology) commercially available byMeso Scale Discovery was used for supernatants

cytokine detection, according to manufacturer’s instructions. A panel that included the following cytokines was used: IFN-g, IFN-b,

IL-1b, IL-6, IL-8, IL-10, IL-17A, IL-18, TGF-b1, TGF-b2, TGF-b3 and TNFa. Briefly, 25 mL of culture supernatants from each well was

used in duplicates. Electrochemiluminescence was detected and measured by using MESOQuickPlex SQ 120 (Meso Scale Discov-

ery Rockville, MD, United States). The results were extrapolated from the standard curve from each specific analyte and plotted in pg/

mL using the DISCOVERY WORKBENCH v4.0 software (Meso Scale Discovery, Rockville, MD, United States).

Phosphorylation of SMAD2/3

After stimulation of 500,000 cells/well in serum-free media (AIM V – Cat 12055091, ThermoFisher) at the determined time points

(30 minutes, 12 and 20 hours), plates were centrifuge and culture components were divided for downstream analysis. Serum-free

was used to avoid contamination of cells with TGF-b in serum. Supernatants were collected for cytokine assessment and cells

were stained using Transcription Factor Phospho (TFP) Buffer Set (Cat 563239, BD Biosciences). Briefly, after centrifugation, cells

were fixed with 1 x TFP Fix/Perm Buffer for 40 minutes, then permeabilized with Perm Buffer III for 15 min and finally stained intra-

cellularly with anti-Smad2(pS465/pS467)/Smad3 (pS423/pS425) (clone O72-670, Cat 562586, BD Biosciences), anti-CD68 (clone

Y1/82A, Cat 564943, BD Biosciences) and a viability dye (LIVE/DEADTM Fixable Blue Dead Cell Stain Kit, Cat L23105, Thermo Fisher)

for 30 minutes. All incubations and centrifugation steps were performed a 4�C.
Active-caspase 1 staining

500,000 cells/well were plated and stained using the eBioscienceTM Foxp3/Transcription Factor Staining Buffer Set (Cat# 00- 5523-

00, Thermo Fisher). After priming with LPS (1 mg/ml) for 4 h, cells were stained with a viability dye (LIVE/DEADTM Fixable Aqua Dead

Cell Stain Kit, Cat L34957, Thermo Fisher) for 15 min at room temperature (RT); cells were stimulated at their respective times (15, 30

and 60 min) prior to resuspension with surface staining mix, composed of antibodies to CD3 (clone UCHT1, Cat 563109, BD Biosci-

ences), CD19 (clone HIB19, Cat 302241, Biolegend), CD14 (clone M5E2, Cat 612902, BD Biosciences), and CD16 (clone 3G8, Cat

302036, Biolegend) and FAM-FLICA�Caspase-1 (YVAD) Assay Kit (Cat 98, ImmunoChemistry Technologies), for 20 min at RT; cells

then were fixed with Fix/Perm buffer (provided by the kit) for 30 min at 4�C. Finally, cells were stained intracellularly with anti-CD68

(clone Y1/82A, Cat 564944, BD Biosciences) for 30 min at 4�C.
Cells were acquired on the BD FACSymphonyTM A5 Cell Analyzer (Becton Dickinson, San Jose, CA) and analyzed with FlowJo

v. 10.7.

QUANTIFICATION AND STATISTICAL ANALYSIS

Outcome definitions
nAb titer curves were integrated over time as a measure of serotype-specific response as an Area Under the Curve (AUC) approach

using the logarithmic trapezoid rule (in base 10) between days 0 and 90. Breadth was calculated on the basis of detection/absence of

nAb of all 4 serotypes (with a PRNT threshold of detection > 10) into High (all 4 serotypes) or low (<4 serotypes) at any time point

between days 0-180. Calculation of peak responses (Table S4) was performed only on responder participants, by determining the

maxima per serotype per participant.

Transcriptomic analysis
RNA was isolated using RNEasy micro-kit (QIAGEN) from frozen PBMC samples taken preimmunization, and the quality of the RNA

was confirmed using an Agilent 2100 Bioanalyzer. Paired-end total RNA sequencing was performed at Beijing Genomics Institute

(BGI) using a BGISeq500 sequencer for 30 million 100 bp reads. Samples were processed in 2 distinct sequencing runs, and
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were thus batch corrected using ComBat102. Raw FASTQ files were processed at Case Western Reserve University with the Sekaly

lab pipeline: After sequencing, reads are processed to remove Illumina adapters and low quality 3’-end bases using the Trimmomatic

software91, and then mapped to the reference human genome version GRCh38 using the RNA-seq optimized software STAR92.

RSeQC was then used to asses strand-specificity of reads for all transcripts94. Transcript abundance was then estimated from

unique mapped reads into raw counts using HTSeq93. R package DESeq2 (version 1.6.2) was then used to normalize read counts

among samples and to identify differentially expressed genes between biological samples95. Serotype-specific AUC outcomes

were used as continuous variables, or as discrete factors for Breadth. The batch effect was directly corrected for by including the

batch in the design. A Wald test was used to evaluate the statistical relevance of the observed variations given its reproducibility be-

tween biological replicates, and a Benjamini-Hochberg correction for large number of measurements was applied to obtain adjusted

p-values. Genes of interest were selected based statistical significance (nominal.p> 0.05), and Bayesian shrinkage estimation was

applied to the fold change to estimate effect sizemore accurately. Hierarchical clustering with complete linkage was performed using

Euclidean distance and displayed using the pheatmap R package.

Preranked Gene Set Enrichment Analysis (GSEA) was performed using fgsea96 for each contrast and/or correlation against gen-

esets extracted from the MSigDB (BROAD Institute)103, CHEA104,105 and Interferome databases106. The signed -log nominal p-value

was used as a ranking metric. Genesets found to be significantly enriched associated with the breadth of the response were consid-

ered as differentially activated pathways. EnrichmentMap was then used to reduce pathway redundancy of enriched pathways by

generating modules of overlapping genesets on the basis of shared genes using a Jaccard distance cutoff of <0.25107. Manual cu-

ration was used for naming the modules, on the basis of member geneset names and biological role of core genes.

GSVA (Gene Set Variation Analysis) R package97 was then used to compute a sample-level geneset enrichment z-score for sig-

nificant EnrichmentMap modules to be significantly enriched using GSEA, on the basis of the expression level of the core genes.

Sample level z-scores were then used for correlation with other OMICs.

Metabolic profiling
Normalized expression values from Metabolon and CellCarta platforms were compared across Breadth groups using a Student’s

T-test. MSEA was used as an adaptation of GSEA on metabolite data by preranking the individual metabolites by their sign(t-value)

* -log(p-value), and. compared to metabolic sets generated from the in-house Metabolon classifications or SMPDB (Small Molecule

Pathway Database) pathways108. EnrichmentMap was then used to reduce pathway redundancy of enriched pathways by gener-

ating modules of metabolite sets on the basis of a Jaccard distance cutoff < 0.5107. Themaximum nominal p-value across sets within

amodule was used as a surrogatemetric of amodule association to breadth. Sample level z-scores for EnrichmentMapmodule were

generated on the core genes using GSVA. Those z-scores were then integrated with transcriptomic genesets selected z-scores to

infer association across OMICs using Spearman correlation.

Unsupervised flow cytometry analysis
Individual FCS files generated by the BD FACS Diva software were imported into FlowJo Software for pregating on CD3-CD19-

CD56- live cell cells (innate panel) or CD19+ live cells (B cell panel). Selected events were then exported: fromwhich an identical num-

ber of events per patient were then randomly subsampled into R.

For bioinformatic analysis of flow cytometry data, a custom script was made using tSNE for RPhenograph analysis was used to to

generate clusters of cells based upon their marker expression98, while clusters were projected on a tSNE dimension reduction of the

data99, allowing for visualization of high dimensional data in two dimensions and for events to be clustered based on similar expres-

sion of flow cytometry markers. This led to identification of innate and B cells subsets.

Frequency of events per samples was then computed per cluster and compared across breadth groups using a Welch’s t-test for

unequal variances. Median Fluorescence Intensity for each marker was computed for each cluster for comparison of expression

profiles.

Single-cell transcriptomic analysis
Publicly available datasets of 10X healthy PBMC datasets were downloaded from a pre-vaccination influenza cohort19 and imported

as a Seurat object100,101. SingleR53 was used to infer cell identities with the cluster method, combined with the Monaco reference

dataset52. Cell identities were validated using both surface marker expression and transcriptional markers. GSVA was used on aver-

aged gene expression per cell identity with the z-score method.

Integrative analysis
We leveraged a projection-based approach from the R packagemixOmics61 to characterize correlations between OMICs (RNA-Seq,

metabolome, proteomics, FCM). A sparse least square regression (sPLS) was used across OMICs as pairwise comparisons: a pair-

wise projection on the same scale allowed to quantify the Pearson correlation coefficient between the features of the two data types

was calculated. To assess the probability of obtaining a Pearson correlation equal to or greater than the one observed, we derived a

p value based on the distribution of the Pearson correlations calculated between all pair of features of the two data types (i.e., the

statistical universe). Pearson correlations corresponding to a p value cutoff of 0.05 were considered significant.
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