Optimal Boolean lattice-based algorithms for the U-curve optimization problem

Publication type
Appears in Collections:
The U-curve optimization problem is characterized by a decomposable in U-shaped curves cost function over the chains of a Boolean lattice. This problem can be applied to model the classical feature selection problem in Machine Learning. In this paper, we point out that the firstly proposed algorithm to tackle the U-curve problem, the RBM algorithm, is in fact suboptimal. We also present two new algorithms: UCS, which is actually optimal to tackle this problem; and UCSR, a variation of UCS that solves a special case of the U-curve problem and relies on a reduced, ordered binary decision diagram to control the search space. We provide results of two computational assays with these new algorithms: first, W-operator design for filtering of binary images; second, linear SVM design for classification of data sets from the UCI Machine Learning Repository. We show that, in these assays, UCS and UCSR outperformed an exhaustive search and also three widely used heuristics: the SFFS sequential selection, the BFS graph-based search, and the CHCGA genetic algorithm. Finally, we analyze the obtained results and point out improvements that might enhance the performance of these two novel algorithms.
Reis MS, Estrela G, Ferreira CE, Barrera J. Optimal Boolean lattice-based algorithms for the U-curve optimization problem. Inf Sci. 2019 Jan;471:97-114. doi:10.1016/j.ins.2018.08.060.
Link to cite this reference
Journal title
Issue Date

Files in This Item:

Existing users please Login
Size: 2.53 MB
Format: Adobe PDF
Embargoed until January 1, 2999    Request a copy
Show full item record

The access to the publications deposited in this repository respects the licenses from journals and publishers.