A novel metalloproteinase-derived cryptide from Bothrops cotiara venom inhibits angiotensin-converting enzyme activity


Publication type
Article
Language
English
Access rights
Restricted access
Appears in Collections:
Metrics
Abstract
Snake venoms are primarily composed of proteins and peptides, which selectively interact with specific molecular targets, disrupting prey homeostasis. Identifying toxins and the mechanisms involved in envenoming can lead to the discovery of new drugs based on natural peptide scaffolds. In this study, we used mass spectrometry-based peptidomics to sequence 197 peptides in the venom of Bothrops cotiara, including a novel 7-residue peptide derived from a snake venom metalloproteinase. This peptide, named Bc-7a, features a pyroglutamic acid at the N-terminal and a PFR motif at the C-terminal, homologous to bradykinin. Using FRET (fluorescence resonance energy transfer) substrate assays, we demonstrated that Bc-7a strongly inhibits the two domains of angiotensin converting enzyme (Ki < 1 μM). Our findings contribute to the repertoire of biologically active peptides from snake venoms capable of inhibiting angiotensin-converting enzyme (ACE), beyond current known structural motifs and precursors. In summary, we report a novel snake venom peptide with ACE inhibitory activity, suggesting its potential contribution to the hypotensive effect observed in envenomation.
Reference
Miyamoto JG, Kitano ES, Zelanis A, Junqueira-de-Azevedo ILM, Sant'Anna SS. A novel metalloproteinase-derived cryptide from Bothrops cotiara venom inhibits angiotensin-converting enzyme activity. Biochimie. 2024 Jan; 216:90-98. doi:10.1016/j.biochi.2023.10.010.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/5128
URL
https://doi.org/10.1016/j.biochi.2023.10.010
Journal title
Issue Date
2024

Show full item record

The access to the publications deposited in this repository respects the licenses from journals and publishers.