
Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop
Autor
Afiliação Butantan
Afiliação externa
(USP) Universidade de São Paulo ; Joint Genome Institute ; Microsoft Redmond campus ; Chungnam National University ; University of Georgia¦¦Estados Unidos ; (UFSCar) Universidade Federal de São Carlos ; Fujian Agriculture and Forestry University ; University of Illinois at Urbana-Champaign ; (JHU) Johns Hopkins University
Tipo de documento
Article
Idioma
English
Direitos de acesso
Open access
Licença de uso
CC BY
Aparece nas Coleções:
Métricas
Resumo em inglês
Background: Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10–13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. Results: Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2–6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ~3.8–4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. Conclusions: This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.
Referência
Souza GM, Van Sluys M-A, Lembke CG, Lee H, Margarido GRA, Hotta CT, et al. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Gigascience. 2019 Nov;8(12):1-18. doi:10.1093/gigascience/giz129.
URL permanente para citação desta referência
https://repositorio.butantan.gov.br/handle/butantan/2873
URL
https://doi.org/10.1093/gigascience/giz129
Sobre o periódico
Agência de fomento
Data de publicação
2019
Arquivos neste item
Este item está licenciada sob uma
Licença Creative Commons