Clinical implications of ontogenetic differences in the coagulotoxic activity of Bothrops jararacussu venoms


Publication type
Article
Language
English
Access rights
Restricted Access
Appears in Collections:
Metrics
Abstract
Is snake venom activity influenced by size? This is a long-standing question that can have important consequences for the treatment of snake envenomation. Ontogenetic shifts in venom composition are a well-documented characteristic of numerous snake species. Although snake venoms can cause a range of pathophysiological disturbances, establishing the coagulotoxic profiles related to such shifts is a justified approach because coagulotoxicity can be deadly, and its neutralisation is a challenge for current antivenom therapy. Thus, we aimed to assess the coagulotoxicity patterns on plasma and fibrinogen produced by B. jararacussu venoms from individuals of different sizes and sex, and the neutralisation potential of SAB (anti bothropic serum produced by Butantan Institute). The use of a metalloproteinase inhibitor (Prinomastat) and a serine proteinase inhibitor (AEBSF) enabled us to determine the toxin class responsible for the observed coagulopathy: activity on plasma was found to be metalloprotease driven, while the activity on fibrinogen is serine protease driven. To further explore differences in venom activity, the activation of Factor X and prothrombin by as a function of snake size was also evaluated. All the venoms exhibited a potent procoagulant effect upon plasma and were less potent in their pseudo-procoagulant clotting effect upon fibrinogen. On human plasma, the venoms from smaller snakes produced more rapid clotting than the larger ones. In contrast, the venom activity on fibrinogen had no relation with size or sex. The difference in procoagulant potency was correlated with the bigger snakes being proportionally better neutralized by antivenom due to the lower levels of procoagulant toxins, than the smaller. Thus, while the antivenom ultimately neutralized the venoms, proportionally more would be needed for an equal mass of venom from a small snake than a large one. Similarly, the neutralisation by SAB of the pseudo-procoagulant clotting effects was also correlated with relative potency, with the smaller and bigger snakes being neutralized proportional to potency, but with no correlation to size. Thromboelastography (TEG) tests on human and toad plasma revealed that small snakes’ venoms acted quicker than large snakes’ venom on both plasmas, with the action upon amphibian plasma consistent with smaller snakes taking a larger proportion of anuran prey than adults. Altogether, the ontogenetic differences regarding coagulotoxic potency and corresponding impact upon relative antivenom neutralisation of snakes with different sizes were shown, underscores the medical importance of investigating ontogenetic changes in order to provide data crucial for evidence-based design of clinical management strategies.
Reference
Fabri C, Zdenek CN., Bourke LA., Seneci L, Chowdhury A, Freitas-de-Sousa LA, et al. Clinical implications of ontogenetic differences in the coagulotoxic activity of Bothrops jararacussu venoms. Toxicol. Lett.. 2021 Sept;348:59-72. doi:10.1016/j.toxlet.2021.05.005.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/3809
Journal title
Issue Date
2021


Files in This Item:

Existing users please Login
10.1016j.toxlet.2021.05.005.pdf
Description:
Size: 3.67 MB
Format: Adobe PDF
Embargoed until January 1, 2999    Request a copy
Show full item record

The access to the publications deposited in this repository respects the licenses from journals and publishers.