FGF-2 induces a failure of cell cycle progression in cells harboring amplified K-Ras, revealing new insights into oncogene-induced senescence


External affiliation
Publication type
Article
Language
English
Access rights
Acesso restrito
Appears in Collections:
Metrics
Abstract
Paradoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Knowledge of how these pathways operate, and how tumor cells may evade these pathways, is important for understanding tumorigenesis. The Y1 cell line, which harbors an amplification of the proto-oncogene Ras, rapidly senesces in response to the mitogen fibroblast growth factor-2 (FGF-2). To gain a more complete picture of how FGF-2 promotes senescence, we employed a multi-omics approach to analyze histone modifications, mRNA and protein expression, and protein phosphorylation in Y1 cells treated with FGF-2. Compared to control cells treated with serum alone, FGF-2 caused a delayed accumulation of acetylation on histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. At the same time, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. We propose that Y1 cells senesce due to an inability to progress through the cell cycle, which may stem from DNA damage or TGFb signaling. Altogether, the phenotype of Y1 cells is consistent with rapidly established oncogene-induced senescence, demonstrating the synergy between growth factors and oncogenes in driving senescence and bringing additional insight into this tumor suppressor mechanism.
Reference
Lund PJ., Lopes MC, Sidoli S, Coradin M, Vitorino FNL, Da Cunha JPC, et al. FGF-2 induces a failure of cell cycle progression in cells harboring amplified K-Ras, revealing new insights into oncogene-induced senescence. Mol. Omics. 2021 May;in press. doi:10.1039/D1MO00019E.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/3872
Journal title
Issue Date
2021


Files in This Item:

Existing users please Login
combined_figs_fgf_rev_20210510.pdf
Description: Figures
Size: 7.46 MB
Format: Adobe PDF
Embargoed until January 1, 2999    Request a copy
FGF_MolOmics_Revised_v01_noHighlights.pdf
Description: Manuscript
Size: 328.71 kB
Format: Adobe PDF
Embargoed until January 1, 2999    Request a copy
Show full item record

The access to the publications deposited in this repository respects the licenses from journals and publishers.