Synthetic peptide derived from Scorpion venom displays minimal toxicity and anti-infective activity in an animal model
Author
Butantan affiliation
External affiliation
Publication type
Article
Language
English
Access rights
Restricted access
Appears in Collections:
Metrics
Abstract
Multidrug-resistant bacteria represent a global health problem increasingly leading to infections that are untreatable with our existing antibiotic arsenal. Therefore, it is critical to identify novel effective antimicrobials. Venoms represent an underexplored source of potential antibiotic molecules. Here, we engineered a peptide (IsCT1-NH2) derived from the venom of the scorpion Opisthacanthus madagascariensis, whose application as an antimicrobial had been traditionally hindered by its high toxicity. Through peptide design and the knowledge obtained in preliminary studies with single and double-substituted analogs, we engineered IsCT1 derivatives with multiple amino acid substitutions to assess the impact of net charge on antimicrobial activity and toxicity. We demonstrate that increased net charge (from +3 to +6) significantly reduced toxicity toward human erythrocytes. Our lead synthetic peptide, [A]1[K]3[F]5[K]8-IsCT1-NH2 (net charge of +4), exhibited increased antimicrobial activity against Gram-negative and Gram-positive bacteria in vitro and enhanced anti-infective activity in a mouse model. Mechanism of action studies revealed that the increased antimicrobial activity of our lead molecule was due, at least in part, to its enhanced ability to permeabilize the outer membrane and depolarize the cytoplasmic membrane. In summary, we describe a simple method based on net charge tuning to turn highly toxic venom-derived peptides into viable therapeutics.
Reference
Oliveira CS, Torres MDT, Pedron CN, Andrade VB, Silva Junior PI, Silva FD, et al. Synthetic peptide derived from Scorpion venom displays minimal toxicity and anti-infective activity in an animal model. ACS Infect Dis. 2021 Aug;9(7):2736–2745. doi:10.1021/acsinfecdis.1c00261.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/3935
URL
https://doi.org/10.1021/acsinfecdis.1c00261
Journal title
Keywords
Funding agency
Issue Date
2021
Show full item record
The access to the publications deposited in this repository respects the licenses from journals and publishers.