CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts


Butantan affiliation
External affiliation
Publication type
Article
Language
English
Access rights
Open access
Terms of use
CC BY
Appears in Collections:
Metrics
Abstract
Motivation Characterization of the coding sequences (CDSs) is an essential step in transcriptome annotation. Incorrect identification of CDSs can lead to the prediction of non-existent proteins that can eventually compromise knowledge if databases are populated with similar incorrect predictions made in different genomes. Also, the correct identification of CDSs is important for the characterization of the untranslated regions (UTRs), which are known to be important regulators of the mRNA translation process. Considering this, we present CodAn (Coding sequence Annotator), a new approach to predict confident CDS and UTR regions in full or partial transcriptome sequences in eukaryote species. Results Our analysis revealed that CodAn performs confident predictions on full-length and partial transcripts with the strand sense of the CDS known or unknown. The comparative analysis showed that CodAn presents better overall performance than other approaches, mainly when considering the correct identification of the full CDS (i.e. correct identification of the start and stop codons). In this sense, CodAn is the best tool to be used in projects involving transcriptomic data. Availability CodAn is freely available at https://github.com/pedronachtigall/CodAn.
Reference
Nachtigall PG, Kashiwabara AY, Durham AM. CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts. Brief. Bioinform. 2021 May;22(3):1–11. doi:10.1093/bib/bbaa045.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/4057
Issue Date
2021


Files in This Item:

bbaa045.pdf
Description:
Size: 850.39 kB
Format: Adobe PDF
View/Open
Show full item record

This item is licensed under a Creative Commons License Creative Commons