Characterization of bacterial communities from the surface and adjacent bottom layers of water in the billings reservoir


Butantan affiliation
Publication type
Article
Language
English
Access rights
Open access
Terms of use
CC BY
Appears in Collections:
Metrics
Abstract
Here, we describe the bacterial diversity and physicochemical properties in freshwater samples from the surface and bottom layers of the Billings Reservoir, the largest open-air storage ecosystem in the São Paulo (Brazil) metropolitan area. Forty-four samples (22 from the surface and 22 from the bottom layers) were characterized based on 16S rRNA gene analysis using Illumina MiSeq. Taxonomical composition revealed an abundance of the Cyanobacteria phylum, followed by Proteobacteria, which were grouped into 1903 and 2689 different genera in the surface and the deep-water layers, respectively. Chroobacteria, Actinobacteria, Betaproteobacteria, and Alphaproteobacteria were the most dominant classes. The Shannon diversity index was in the range of 2.3–5.39 and 4.04–6.86 in the surface and bottom layers, respectively. Flavobacterium was the most predominant pathogenic genus. Temperature and phosphorus concentrations were among the most influential factors in shaping the microbial communities of both layers. Predictive functional analysis suggests that the reservoir is enriched in motility genes involved in flagellar assembly. The overall results provide new information on the diversity composition, ecological function, and health risks of the bacterial community detected in the Billings freshwater reservoir. The broad bacterial diversity indicates that the bacterioplankton communities in the reservoir were involved in multiple essential environmental processes.
Reference
Marcondes MA, Nascimento A, Pessôa R, Victor JR, Duarte AJS, Clissa PB, et al. Characterization of bacterial communities from the surface and adjacent bottom layers of water in the billings reservoir. .
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/4490
URL
https://doi.org/10.3390/life12081280
Journal title
Issue Date
2022


Files in This Item:

life-12-01280.pdf
Description:
Size: 1.55 MB
Format: Adobe PDF
View/Open
Show full item record

This item is licensed under a Creative Commons License Creative Commons