In silico prospection of receptors associated with the biological activity of U1-SCTRX-lg1a: an antimicrobial peptide isolated from the venom of Loxosceles gaucho
Author
Butantan affiliation
External affiliation
Publication type
Article
Language
English
Access rights
Restricted access
Appears in Collections:
Metrics
Abstract
The emergence of antibiotic-resistant pathogens generates impairment to human health. U1-SCTRX-lg1a is a peptide isolated from a phospholipase D extracted from the spider venom of Loxosceles gaucho with antimicrobial activity against Gram-negative bacteria (between 1.15 and 4.6 μM). The aim of this study was to suggest potential receptors associated with the antimicrobial activity of U1-SCTRX-lg1a using in silico bioinformatics tools. The search for potential targets of U1-SCRTX-lg1a was performed using the PharmMapper server. Molecular docking between U1-SCRTX-lg1a and the receptor was performed using PatchDock software. The prediction of ligand sites for each receptor was conducted using the PDBSum server. Chimera 1.6 software was used to perform molecular dynamics simulations only for the best dock score receptor. In addition, U1-SCRTX-lg1a and native ligand interactions were compared using AutoDock Vina software. Finally, predicted interactions were compared with the ligand site previously described in the literature. The bioprospecting of U1-SCRTX-lg1a resulted in the identification of three hundred (300) diverse targets (Table S1), forty-nine (49) of which were intracellular proteins originating from Gram-negative microorganisms (Table S2). Docking results indicate Scores (10,702 to 6066), Areas (1498.70 to 728.40) and ACEs (417.90 to – 152.8) values. Among these, NAD + NH3-dependent synthetase (PDB ID: 1wxi) showed a dock score of 9742, area of 1223.6 and ACE of 38.38 in addition to presenting a Normalized Fit score of 8812 on PharmMapper server. Analysis of the interaction of ligands and receptors suggests that the peptide derived from brown spider venom can interact with residues SER48 and THR160. Furthermore, the C terminus (– 7.0 score) has greater affinity for the receptor than the N terminus (– 7.7 score). The molecular dynamics assay shown that free energy value for the protein complex of – 214,890.21 kJ/mol, whereas with rigid docking, this value was – 29.952.8 sugerindo that after the molecular dynamics simulation, the complex exhibits a more favorable energy value compared to the previous state. The in silico bioprospecting of receptors suggests that U1-SCRTX-lg1a may interfere with NAD + production in Escherichia coli, a Gram-negative bacterium, altering the homeostasis of the microorganism and impairing growth.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/5285
URL
https://doi.org/10.1007/s40203-024-00190-8
Journal title
Keywords
Funding agency
Issue Date
2024
Show full item record
The access to the publications deposited in this repository respects the licenses from journals and publishers.