Understanding local reactions induced by Bothrops jararaca venom: the role of inflammatory mediators in Leukocyte–Endothelium interactions

Butantan affiliation
Publication type
Access rights
Open access
Terms of use
Appears in Collections:
In recent years, extensive research has delved into the pathophysiology of local reactions triggered by Bothrops snake venoms. Even though antivenom works well at reducing death and systemic effects, it is still not very effective in treating local reactions because it cannot counteract damage that has already been triggered. This limitation might be attributed to certain molecules that amplify the venom-induced innate response. While evidence suggests endogenous mediators at the venom site play a role in this envenomation, in Brazil, the concurrent use of anti-inflammatory agents or other drugs alongside antivenom remains uncommon. This study evaluated the pharmacological mediation of alterations in leukocyte–endothelium interactions following the experimental envenomation of mice with Bothrops jararaca venom, the main culprit of snake-related accidents in Southeast Brazil. We treated envenomed mice with inhibitors of different pharmacological pathways and observed the cremaster muscle microcirculation with intravital microscopy. We found that eicosanoids related to cyclooxygenase pathways and nitric oxide significantly contributed to B. jararaca venom-induced alterations in leukocyte–endothelium interactions. Conversely, lipoxygenase-mediated eicosanoids, histamine, and serotonin had minimal participation. Notably, dexamethasone and antivenom treatment diminished B. jararaca venom–induced alterations in leukocyte–endothelium interactions. The limited efficacy of the antivenom in managing Bothrops venom-induced local reactions emphasizes the critical need for supplementary treatments to enhance therapeutic outcomes.
Link to cite this reference
Journal title
Issue Date

Files in This Item:

Size: 1.32 MB
Format: Adobe PDF
Show full item record

This item is licensed under a Creative Commons License Creative Commons