Laser wavelength and sample conditioning effects on biochemical monitoring of SARS-CoV-2 VLP production upstream stage by Raman spectroscopy


Butantan affiliation
Publication type
Article
Language
English
Access rights
Restricted access
Appears in Collections:
Metrics
Abstract
This work assessed the impact of laser wavelength and sample conditioning on offline monitoring (viable cell density, cell viability, virus titer, glucose, lactate, glutamine, glutamate, and ammonium) of SARS-CoV-2 viruslike particles production upstream stage by Raman spectroscopy. The evaluated chemometrics techniques were Partial Least Squares (PLS) and Artificial Neural Networks (ANN), and different spectral filtering approaches were also considered. ANN showed better prediction capacity for most of the parameters, but ammonium and lactate, better predicted by PLS, and glutamine, no difference between modeling techniques was detected. For cell growth parameters and virus titer, samples without cells measured at 785 nm Raman laser wavelength originated better-adjusted models. This laser wavelength was also more appropriate for the remaining monitored experimental parameters except for glucose, in which the best model came from the spectral database acquired at 1064 nm wavelength. Cell remotion significantly increased the accuracy of viable cell density, cell viability, glutamate, and virus titer models. However, glucose, lactate, and ammonium models showed better prediction capacity for samples containing cells. Thus, it was demonstrated that laser wavelength, sample conditioning, spectral preprocessing, and chemometric modeling techniques need to be tailored for each experimental parameter to improve accuracy.
Reference
Dias FM, Rabello JP, Guardalini LGO, Leme J, Bernardino TC, Pires L, et al. license.txt. Biochem. Eng. J.. 2024 Jul; 211:109441. doi:10.1016/j.bej.2024.109441.
Link to cite this reference
https://repositorio.butantan.gov.br/handle/butantan/5444
URL
https://doi.org/10.1016/j.bej.2024.109441
Issue Date
2024

Show full item record

The access to the publications deposited in this repository respects the licenses from journals and publishers.