Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer
Autor
Afiliação Butantan
Afiliação externa
Tipo de documento
Article
Idioma
English
Direitos de acesso
Open access
Licença de uso
CC BY-NC
Aparece nas Coleções:
Métricas
Resumo em inglês
Immune checkpoint (IC) blockade using monoclonal antibodies is currently one of the most successful immunotherapeutic interventions to treat cancer. By reinvigorating antitumor exhausted T cells, this approach can lead to durable clinical responses. However, the majority of patients either do not respond or present a short-lived response to IC blockade, in part due to a scarcity of tumor-specific T cells within the tumor microenvironment. Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CARs) or engineered T-cell receptors (TCRs) provide the necessary tumor-specific immune cell population to target cancer cells. However, this therapy has been considerably ineffective against solid tumors in part due to IC-mediated immunosuppressive effects within the tumor microenvironment. These limitations could be overcome by associating adoptive cell transfer of genetically engineered T cells and IC blockade. In this comprehensive review, we highlight the strategies and outcomes of preclinical and clinical attempts to disrupt IC signaling in adoptive T-cell transfer against cancer. These strategies include combined administration of genetically engineered T cells and IC inhibitors, engineered T cells with intrinsic modifications to disrupt IC signaling, and the design of CARs against IC molecules. The current landscape indicates that the synergy of the fast-paced refinements of gene-editing technologies and synthetic biology and the increased comprehension of IC signaling will certainly translate into a novel and more effective immunotherapeutic approaches to treat patients with cancer.
Referência
Rossetti R, Brand H, Lima SCG, Izadora Peter Furtado S, Silveira RM, Carvalho F DM, et al. Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer. Immunother Adv. 2022 Jan; 2(2):ltac005. doi:10.1093/immadv/ltac005.
URL permanente para citação desta referência
https://repositorio.butantan.gov.br/handle/butantan/4466
Sobre o periódico
Palavra-chave
Agência de fomento
Data de publicação
2022
Arquivos neste item
Este item está licenciada sob uma Licença Creative Commons