Interaction of Graphene oxide particles and dendrimers with human breast cancer cells by real-time microscopy


Tipo de documento
Article
Idioma
English
Direitos de acesso
Restricted access
Aparece nas Coleções:
Métricas
Resumo em inglês
Graphene oxide (GOX) has become attractive due to its unique physicochemical properties. This nanomaterial can associate with other dendrimers, making them more soluble and allowing better interaction with biomacromolecules. The present study aimed to investigate, by real-time microscopy, the behavior of human breast cancer cells exposed to particles of materials based on graphene oxide. The MCF-7 cell line was exposed to GOX, GOX associated with Polypropylenimine hexadecaamine Dendrimer, Generation 3.0—DAB-AM-16 (GOXD) and GOX associated with polypropyleneimine—PAMAM (GOXP) in the presence or absence of fetal bovine serum (FBS). GOX, GOXD and GOXP were taken up by the cells in clusters and then the clusters were fragmented into smaller ones inside the cells. Real-time microscopy showed that the presence of FBS in the culture medium could allow a more efficient internalization of graphene materials. After internalizing the materials, cells can redistribute the clumps to their daughter cells. In conclusion, the present study showed that the particles can adhere to the cell surface, favoring their internalization. The presence of FBS contributed to the formation of smaller aggregates of particles, avoiding the formation of large ones, and thus transmitted a more efficient internalization of the materials through the interaction of the particles with the cell membrane.
Referência
Ribeiro BFM, Chaves JB, Souza MM, Keppler AF, Carmo DRD, Machado-Santelli GM.. Interaction of Graphene oxide particles and dendrimers with human breast cancer cells by real-time microscopy. Pharmaceutics. 2023 Nov; 15(12)2655. doi:10.1111/1348-0421.13100.
URL permanente para citação desta referência
https://repositorio.butantan.gov.br/handle/butantan/5220
URL
https://doi.org/10.1111/1348-0421.13100
Sobre o periódico
Data de publicação
2023


Arquivos neste item

pharmaceutics-15-02655.pdf
Tamanho: 3.96 MB
Formato: Adobe PDF
Ver/Aberto
Mostrar todos os metadados

O acesso às publicações depositadas no repositório está em conformidade com as licenças dos periódicos e editoras.