Modulation of pro-apoptotic effects and mitochondrial potential on B16F10 cells by DODAC/PHO-S liposomes

Objective We aimed to evaluate the potential of DODAC/PHO-S liposomes on the modulation of the expression of pro-apoptotic proteins, loss of lysosomal integrity and the mitochondrial electrical potential, compared with phosphoethanolamine. Results The results of this study demonstrate that DODAC/PHO-S liposomes have exhibited broad cytotoxic potential in B16F10 murine melanoma cells, with significantly greater proportions than treatment with PHO-S. The treatment with the DODAC/PHO-S 2.0 mM liposomal formulation was more efficient in decreasing mitochondrial electrical potential at the same concentrations and treatment time than PHO-S The liposomal formulation DODAC/PHO-S (2.0 mM) was more efficient to promote morphological changes in the cells, without presenting intact lysosomes, at the same time of treatment and concentration as PHO-S Our results demonstrated that the liposomal formulation increased DR4 receptor expression and activated caspases 8 and 3, resulting in the release of cytochrome c in B16F10 tumour cells, when compared to treatment with PHO-S The data obtained prove that the use of DODAC as carrier can maximize the cytotoxic effects of PHO-S This was demonstrated by the translocation of cytochrome c to the cytoplasm and activation of caspase-3 and 8, decreasing the mitochondrial electrical potential and generating morphological changes, in B16F10 cells.
Keywords
Liposomes;  Nanotechnology;  Melanoma;  Phosphoethanolamine

metadata.dc.contributor
metadata.dc.contributor.external
metadata.dc.description.sponsorship
Document type
Article
Source
Luna ACL, Santos Filho JRA, Hesse H, Neto SC, Chierice GO, Maria DA. Modulation of pro-apoptotic effects and mitochondrial potential on B16F10 cells by DODAC/PHO-S liposomes. BMC Res Notes. 2018 Feb;11:126. doi:10.1186/s13104-018-3170-7.
Appears in Collections:
Metrics
Rights
Open Access
URL
URI

Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.